Abstract

We present a systematic study of GexAsySe1-x-y bulk chalcogenide glasses to determine the best composition for fabricating alloptical devices. The dependence of physical parameters such as the bandgap, glass transition temperature and third order optical nonlinearity (n2) on composition has been studied and a relation between the bond-structure and elevated linear loss levels in high Germanium glasses has been identified. It is found that glasses with 11<x<13 % are most suitable for all-optical devices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high nonlinear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435–1440 (2001).
    [Crossref]
  2. F. Smektala, C. Quemard, L. Leniendre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large nonlinear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
    [Crossref]
  3. J. T. Gopinath, M. Solajcic, and E. P. Ippen, “Third order nonlinearities in Ge-As-Se based glasses for telecommunications applications,” J. Appl. Phys. 96, 6931–6933 (2004).
    [Crossref]
  4. J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se Glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822–824 (2002).
    [Crossref]
  5. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
    [Crossref]
  6. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J. Lightwave Technol. 21, 2779–2790 (2003).
    [Crossref]
  7. Z. J. Huang, A. Gray, I. Khrushchev, and I. Bennion, “10-Gb/s transmission over 100 mm of standard fiber using 2R regeneration in an optical loop mirror,” IEEE Photon. Technol. Lett. 162526–2528 (2004).
    [Crossref]
  8. G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, “40 Gbit/s pseudo-linear transmission over one million kilometers,” in Proceedings of Optical Fiber Communications Conference, Anaheim, CA, 2002.
  9. T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, k. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeniuve, “Nonlinear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 256&257, 353–360 (1999).
    [Crossref]
  10. R.P. Wang, A.V. Rode, C.J. Zha, S.J. Madden, and B. Luther-Davies, “Annealing induced phase transformation in amorphous As2S3 films,” J. Appl. Phys. 100 (2006).
  11. S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Exp. 15, 14414 (2007).
    [Crossref]
  12. C. Zha, R.P. Wang, A. Smith, A. Prasad, R. A. Jarvis, and B. Luther-Davies, “Optical properties and structural correlations of GeAsSe chalcogenide glasses,” J. Mater. Sci. Materials in Electronics 18, 389–392 (2007).
    [Crossref]
  13. G.I. Stegeman and E.W. Wright, “All-Optical Waveguide Switching,” Opt. Quantum Electron. 22, 95–122, (1990).
    [Crossref]
  14. Borisova, Glassy Semiconductors, (Plenum Press1981).
  15. Tao Qu, D.G. Georgiev, P. Boolchand, and M. Micoulaut, “The Intermediate Phase in Ternary GexAsxSe1-2x Glasses,” Mat. Res. Soc. Symp. Proc. 754CC8.1.1– CC8.1.12 (2003).
  16. R.P. Wang, C.J. Zha, A.V. Rode, S.J. Madden, and B. Luther-Davies, “Thermal Characterization of Ge-As-Se Glasses by Differential Scanning Calorimetry,” J. Mater. Sci. Materials in Electronics 18, 419–422, (2007).
    [Crossref]
  17. K. Tanaka, “Structural Phase Transitions in Chalcogenide Glass,” Phys. Rev. B 39, 1270–1279 (1989).
    [Crossref]
  18. P. Boolchand, D. Georgiev, T. Qu, F. Wang, L. Cai, and S. Chakravarty, “Nanoscale phase separation effects near r=2.4 and 2.67 and rigidity transitions in chalcogenide glasses,” C.R Chimie 11, 713–724 (2003).
  19. W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, “Photothermal Deflection Spectroscopy and Detection,” Appl. Opt. 20, 1333–1344 (1981).
    [Crossref] [PubMed]
  20. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum. Electron. 26, 760–769 (1990).
    [Crossref]
  21. T. Kato, Y. Suetsugu, M. Takagi, E. Sasaoka, and M. Nishimura, “Measurement of the nonlinear refractive index in optical fibre by the cross-phase modulation method with depolarized pump light,” Opt. Lett. 20, 988–990 (1995).
    [Crossref] [PubMed]
  22. Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Exp. 12, 5140–5145 (2004).
    [Crossref]
  23. J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064 µm,” Opt. Mat. 25, 231–237 (2004).
    [Crossref]
  24. M. Popescu, Non-crystalline Chalcogenides, (Kluwer Academic Publishers, 2000).
  25. N. Kumagai, J. Shirafuji, and Y. Inuishi, “Raman and Infrared Studies on Vibrational Properties of Ge-Se glasses,” J. Phys. Soc. Jpn. 42, 1262–1268 (1977).
    [Crossref]
  26. P. Němec, B. Frumarová, and M. Frumar, “Structure and Properties of pure and Pr3+ doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270, 137 (2000).
    [Crossref]
  27. E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32, 231–254 (1991).
  28. M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear Refractive Index measurement in Chalcogenide Glass Fibres by Self Phase Modulation,” Appl. Phys. Lett. 60, 1153–1154 (1992).
    [Crossref]
  29. H.C. Nguyen, K. Finsterbusch, D.J. Moss, and B.J. Eggleton, “Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre,” Electron. Lett. 42, 571–572 (2006).
    [Crossref]
  30. M. Shiek-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum. Electron. 27, 1296–1309 (1991).
    [Crossref]
  31. K. Tanaka, “Nonlinear optics in glasses: How can we analyse?,” J. Phys. Chem. Solids 68, 896–900 (2007).
    [Crossref]

2007 (4)

S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Exp. 15, 14414 (2007).
[Crossref]

C. Zha, R.P. Wang, A. Smith, A. Prasad, R. A. Jarvis, and B. Luther-Davies, “Optical properties and structural correlations of GeAsSe chalcogenide glasses,” J. Mater. Sci. Materials in Electronics 18, 389–392 (2007).
[Crossref]

R.P. Wang, C.J. Zha, A.V. Rode, S.J. Madden, and B. Luther-Davies, “Thermal Characterization of Ge-As-Se Glasses by Differential Scanning Calorimetry,” J. Mater. Sci. Materials in Electronics 18, 419–422, (2007).
[Crossref]

K. Tanaka, “Nonlinear optics in glasses: How can we analyse?,” J. Phys. Chem. Solids 68, 896–900 (2007).
[Crossref]

2006 (2)

H.C. Nguyen, K. Finsterbusch, D.J. Moss, and B.J. Eggleton, “Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre,” Electron. Lett. 42, 571–572 (2006).
[Crossref]

R.P. Wang, A.V. Rode, C.J. Zha, S.J. Madden, and B. Luther-Davies, “Annealing induced phase transformation in amorphous As2S3 films,” J. Appl. Phys. 100 (2006).

2004 (4)

Z. J. Huang, A. Gray, I. Khrushchev, and I. Bennion, “10-Gb/s transmission over 100 mm of standard fiber using 2R regeneration in an optical loop mirror,” IEEE Photon. Technol. Lett. 162526–2528 (2004).
[Crossref]

J. T. Gopinath, M. Solajcic, and E. P. Ippen, “Third order nonlinearities in Ge-As-Se based glasses for telecommunications applications,” J. Appl. Phys. 96, 6931–6933 (2004).
[Crossref]

Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Exp. 12, 5140–5145 (2004).
[Crossref]

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064 µm,” Opt. Mat. 25, 231–237 (2004).
[Crossref]

2003 (3)

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J. Lightwave Technol. 21, 2779–2790 (2003).
[Crossref]

P. Boolchand, D. Georgiev, T. Qu, F. Wang, L. Cai, and S. Chakravarty, “Nanoscale phase separation effects near r=2.4 and 2.67 and rigidity transitions in chalcogenide glasses,” C.R Chimie 11, 713–724 (2003).

Tao Qu, D.G. Georgiev, P. Boolchand, and M. Micoulaut, “The Intermediate Phase in Ternary GexAsxSe1-2x Glasses,” Mat. Res. Soc. Symp. Proc. 754CC8.1.1– CC8.1.12 (2003).

2002 (2)

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se Glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822–824 (2002).
[Crossref]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
[Crossref]

2001 (1)

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high nonlinear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435–1440 (2001).
[Crossref]

2000 (1)

P. Němec, B. Frumarová, and M. Frumar, “Structure and Properties of pure and Pr3+ doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270, 137 (2000).
[Crossref]

1999 (1)

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, k. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeniuve, “Nonlinear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 256&257, 353–360 (1999).
[Crossref]

1998 (1)

F. Smektala, C. Quemard, L. Leniendre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large nonlinear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[Crossref]

1995 (1)

1992 (1)

M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear Refractive Index measurement in Chalcogenide Glass Fibres by Self Phase Modulation,” Appl. Phys. Lett. 60, 1153–1154 (1992).
[Crossref]

1991 (2)

M. Shiek-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum. Electron. 27, 1296–1309 (1991).
[Crossref]

E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32, 231–254 (1991).

1990 (2)

M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum. Electron. 26, 760–769 (1990).
[Crossref]

G.I. Stegeman and E.W. Wright, “All-Optical Waveguide Switching,” Opt. Quantum Electron. 22, 95–122, (1990).
[Crossref]

1989 (1)

K. Tanaka, “Structural Phase Transitions in Chalcogenide Glass,” Phys. Rev. B 39, 1270–1279 (1989).
[Crossref]

1981 (1)

1977 (1)

N. Kumagai, J. Shirafuji, and Y. Inuishi, “Raman and Infrared Studies on Vibrational Properties of Ge-Se glasses,” J. Phys. Soc. Jpn. 42, 1262–1268 (1977).
[Crossref]

Aggarwal, I. D.

Aitken, B. G.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se Glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822–824 (2002).
[Crossref]

Amer, N. M.

Asobe, M.

M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear Refractive Index measurement in Chalcogenide Glass Fibres by Self Phase Modulation,” Appl. Phys. Lett. 60, 1153–1154 (1992).
[Crossref]

Balmefrezol, E.

Barthelemy, A.

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high nonlinear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435–1440 (2001).
[Crossref]

F. Smektala, C. Quemard, L. Leniendre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large nonlinear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[Crossref]

Beatty, R.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, k. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeniuve, “Nonlinear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 256&257, 353–360 (1999).
[Crossref]

Bennion, I.

Z. J. Huang, A. Gray, I. Khrushchev, and I. Bennion, “10-Gb/s transmission over 100 mm of standard fiber using 2R regeneration in an optical loop mirror,” IEEE Photon. Technol. Lett. 162526–2528 (2004).
[Crossref]

Boccara, A. C.

Boolchand, P.

P. Boolchand, D. Georgiev, T. Qu, F. Wang, L. Cai, and S. Chakravarty, “Nanoscale phase separation effects near r=2.4 and 2.67 and rigidity transitions in chalcogenide glasses,” C.R Chimie 11, 713–724 (2003).

Tao Qu, D.G. Georgiev, P. Boolchand, and M. Micoulaut, “The Intermediate Phase in Ternary GexAsxSe1-2x Glasses,” Mat. Res. Soc. Symp. Proc. 754CC8.1.1– CC8.1.12 (2003).

Borisova,

Borisova, Glassy Semiconductors, (Plenum Press1981).

Boudebs, G.

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064 µm,” Opt. Mat. 25, 231–237 (2004).
[Crossref]

Brindel, P.

Bulla, D. A.

S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Exp. 15, 14414 (2007).
[Crossref]

Bureau, B.

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064 µm,” Opt. Mat. 25, 231–237 (2004).
[Crossref]

Cai, L.

P. Boolchand, D. Georgiev, T. Qu, F. Wang, L. Cai, and S. Chakravarty, “Nanoscale phase separation effects near r=2.4 and 2.67 and rigidity transitions in chalcogenide glasses,” C.R Chimie 11, 713–724 (2003).

Cardinal, T.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, k. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeniuve, “Nonlinear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 256&257, 353–360 (1999).
[Crossref]

Chakravarty, S.

P. Boolchand, D. Georgiev, T. Qu, F. Wang, L. Cai, and S. Chakravarty, “Nanoscale phase separation effects near r=2.4 and 2.67 and rigidity transitions in chalcogenide glasses,” C.R Chimie 11, 713–724 (2003).

Choi, D-Y.

S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Exp. 15, 14414 (2007).
[Crossref]

Couderc, V.

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high nonlinear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435–1440 (2001).
[Crossref]

De Angelis, C.

F. Smektala, C. Quemard, L. Leniendre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large nonlinear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[Crossref]

Eggleton, B. J.

S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Exp. 15, 14414 (2007).
[Crossref]

Eggleton, B.J.

H.C. Nguyen, K. Finsterbusch, D.J. Moss, and B.J. Eggleton, “Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre,” Electron. Lett. 42, 571–572 (2006).
[Crossref]

Essiambre, R.-J.

G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, “40 Gbit/s pseudo-linear transmission over one million kilometers,” in Proceedings of Optical Fiber Communications Conference, Anaheim, CA, 2002.

Feder, K. D. K.

G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, “40 Gbit/s pseudo-linear transmission over one million kilometers,” in Proceedings of Optical Fiber Communications Conference, Anaheim, CA, 2002.

Finsterbusch, K.

H.C. Nguyen, K. Finsterbusch, D.J. Moss, and B.J. Eggleton, “Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre,” Electron. Lett. 42, 571–572 (2006).
[Crossref]

Fournier, D.

Frumar, M.

P. Němec, B. Frumarová, and M. Frumar, “Structure and Properties of pure and Pr3+ doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270, 137 (2000).
[Crossref]

Frumarová, B.

P. Němec, B. Frumarová, and M. Frumar, “Structure and Properties of pure and Pr3+ doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270, 137 (2000).
[Crossref]

Georgiev, D.

P. Boolchand, D. Georgiev, T. Qu, F. Wang, L. Cai, and S. Chakravarty, “Nanoscale phase separation effects near r=2.4 and 2.67 and rigidity transitions in chalcogenide glasses,” C.R Chimie 11, 713–724 (2003).

Georgiev, D.G.

Tao Qu, D.G. Georgiev, P. Boolchand, and M. Micoulaut, “The Intermediate Phase in Ternary GexAsxSe1-2x Glasses,” Mat. Res. Soc. Symp. Proc. 754CC8.1.1– CC8.1.12 (2003).

Gopinath, J. T.

J. T. Gopinath, M. Solajcic, and E. P. Ippen, “Third order nonlinearities in Ge-As-Se based glasses for telecommunications applications,” J. Appl. Phys. 96, 6931–6933 (2004).
[Crossref]

Gray, A.

Z. J. Huang, A. Gray, I. Khrushchev, and I. Bennion, “10-Gb/s transmission over 100 mm of standard fiber using 2R regeneration in an optical loop mirror,” IEEE Photon. Technol. Lett. 162526–2528 (2004).
[Crossref]

Hagan, D. J.

M. Shiek-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum. Electron. 27, 1296–1309 (1991).
[Crossref]

Hagan, D.J.

M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum. Electron. 26, 760–769 (1990).
[Crossref]

Harbold, J. M.

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
[Crossref]

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se Glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822–824 (2002).
[Crossref]

Her, T.

G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, “40 Gbit/s pseudo-linear transmission over one million kilometers,” in Proceedings of Optical Fiber Communications Conference, Anaheim, CA, 2002.

Huang, Z. J.

Z. J. Huang, A. Gray, I. Khrushchev, and I. Bennion, “10-Gb/s transmission over 100 mm of standard fiber using 2R regeneration in an optical loop mirror,” IEEE Photon. Technol. Lett. 162526–2528 (2004).
[Crossref]

Hutchings, D. C.

M. Shiek-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum. Electron. 27, 1296–1309 (1991).
[Crossref]

Ilday, F. O.

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
[Crossref]

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se Glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822–824 (2002).
[Crossref]

Inuishi, Y.

N. Kumagai, J. Shirafuji, and Y. Inuishi, “Raman and Infrared Studies on Vibrational Properties of Ge-Se glasses,” J. Phys. Soc. Jpn. 42, 1262–1268 (1977).
[Crossref]

Ippen, E. P.

J. T. Gopinath, M. Solajcic, and E. P. Ippen, “Third order nonlinearities in Ge-As-Se based glasses for telecommunications applications,” J. Appl. Phys. 96, 6931–6933 (2004).
[Crossref]

Jackson, W. B.

Jarvis, R.

Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Exp. 12, 5140–5145 (2004).
[Crossref]

Jarvis, R. A.

C. Zha, R.P. Wang, A. Smith, A. Prasad, R. A. Jarvis, and B. Luther-Davies, “Optical properties and structural correlations of GeAsSe chalcogenide glasses,” J. Mater. Sci. Materials in Electronics 18, 389–392 (2007).
[Crossref]

Joergensen, C.

G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, “40 Gbit/s pseudo-linear transmission over one million kilometers,” in Proceedings of Optical Fiber Communications Conference, Anaheim, CA, 2002.

Kanamori, T.

M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear Refractive Index measurement in Chalcogenide Glass Fibres by Self Phase Modulation,” Appl. Phys. Lett. 60, 1153–1154 (1992).
[Crossref]

Kato, T.

Khrushchev, I.

Z. J. Huang, A. Gray, I. Khrushchev, and I. Bennion, “10-Gb/s transmission over 100 mm of standard fiber using 2R regeneration in an optical loop mirror,” IEEE Photon. Technol. Lett. 162526–2528 (2004).
[Crossref]

Krol, D. M.

E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32, 231–254 (1991).

Kubodera, K.

M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear Refractive Index measurement in Chalcogenide Glass Fibres by Self Phase Modulation,” Appl. Phys. Lett. 60, 1153–1154 (1992).
[Crossref]

Kumagai, N.

N. Kumagai, J. Shirafuji, and Y. Inuishi, “Raman and Infrared Studies on Vibrational Properties of Ge-Se glasses,” J. Phys. Soc. Jpn. 42, 1262–1268 (1977).
[Crossref]

Lavigne, B.

Le Foulgoc, k.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, k. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeniuve, “Nonlinear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 256&257, 353–360 (1999).
[Crossref]

Leclerc, O.

Leniendre, L.

F. Smektala, C. Quemard, L. Leniendre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large nonlinear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[Crossref]

Leuthold, J.

G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, “40 Gbit/s pseudo-linear transmission over one million kilometers,” in Proceedings of Optical Fiber Communications Conference, Anaheim, CA, 2002.

Li, W.

Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Exp. 12, 5140–5145 (2004).
[Crossref]

Lucas, J.

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064 µm,” Opt. Mat. 25, 231–237 (2004).
[Crossref]

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high nonlinear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435–1440 (2001).
[Crossref]

F. Smektala, C. Quemard, L. Leniendre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large nonlinear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[Crossref]

Luther-Davies, B.

C. Zha, R.P. Wang, A. Smith, A. Prasad, R. A. Jarvis, and B. Luther-Davies, “Optical properties and structural correlations of GeAsSe chalcogenide glasses,” J. Mater. Sci. Materials in Electronics 18, 389–392 (2007).
[Crossref]

R.P. Wang, C.J. Zha, A.V. Rode, S.J. Madden, and B. Luther-Davies, “Thermal Characterization of Ge-As-Se Glasses by Differential Scanning Calorimetry,” J. Mater. Sci. Materials in Electronics 18, 419–422, (2007).
[Crossref]

S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Exp. 15, 14414 (2007).
[Crossref]

R.P. Wang, A.V. Rode, C.J. Zha, S.J. Madden, and B. Luther-Davies, “Annealing induced phase transformation in amorphous As2S3 films,” J. Appl. Phys. 100 (2006).

Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Exp. 12, 5140–5145 (2004).
[Crossref]

Madden, S. J.

S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Exp. 15, 14414 (2007).
[Crossref]

Madden, S.J.

R.P. Wang, C.J. Zha, A.V. Rode, S.J. Madden, and B. Luther-Davies, “Thermal Characterization of Ge-As-Se Glasses by Differential Scanning Calorimetry,” J. Mater. Sci. Materials in Electronics 18, 419–422, (2007).
[Crossref]

R.P. Wang, A.V. Rode, C.J. Zha, S.J. Madden, and B. Luther-Davies, “Annealing induced phase transformation in amorphous As2S3 films,” J. Appl. Phys. 100 (2006).

Madsen, N.

Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Exp. 12, 5140–5145 (2004).
[Crossref]

Meneghini, C.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, k. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeniuve, “Nonlinear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 256&257, 353–360 (1999).
[Crossref]

Micoulaut, M.

Tao Qu, D.G. Georgiev, P. Boolchand, and M. Micoulaut, “The Intermediate Phase in Ternary GexAsxSe1-2x Glasses,” Mat. Res. Soc. Symp. Proc. 754CC8.1.1– CC8.1.12 (2003).

Monteil, A.

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064 µm,” Opt. Mat. 25, 231–237 (2004).
[Crossref]

Moss, D.J.

H.C. Nguyen, K. Finsterbusch, D.J. Moss, and B.J. Eggleton, “Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre,” Electron. Lett. 42, 571–572 (2006).
[Crossref]

Nemec, P.

P. Němec, B. Frumarová, and M. Frumar, “Structure and Properties of pure and Pr3+ doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270, 137 (2000).
[Crossref]

Nguyen, H.C.

H.C. Nguyen, K. Finsterbusch, D.J. Moss, and B.J. Eggleton, “Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre,” Electron. Lett. 42, 571–572 (2006).
[Crossref]

Nguyen, V. Q.

Nishimura, M.

Pelusi, M. D.

S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Exp. 15, 14414 (2007).
[Crossref]

Pierre, L.

Popescu, M.

M. Popescu, Non-crystalline Chalcogenides, (Kluwer Academic Publishers, 2000).

Prasad, A.

C. Zha, R.P. Wang, A. Smith, A. Prasad, R. A. Jarvis, and B. Luther-Davies, “Optical properties and structural correlations of GeAsSe chalcogenide glasses,” J. Mater. Sci. Materials in Electronics 18, 389–392 (2007).
[Crossref]

Qu, T.

P. Boolchand, D. Georgiev, T. Qu, F. Wang, L. Cai, and S. Chakravarty, “Nanoscale phase separation effects near r=2.4 and 2.67 and rigidity transitions in chalcogenide glasses,” C.R Chimie 11, 713–724 (2003).

Qu, Tao

Tao Qu, D.G. Georgiev, P. Boolchand, and M. Micoulaut, “The Intermediate Phase in Ternary GexAsxSe1-2x Glasses,” Mat. Res. Soc. Symp. Proc. 754CC8.1.1– CC8.1.12 (2003).

Quemard, C.

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high nonlinear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435–1440 (2001).
[Crossref]

F. Smektala, C. Quemard, L. Leniendre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large nonlinear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[Crossref]

Raybon, G.

G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, “40 Gbit/s pseudo-linear transmission over one million kilometers,” in Proceedings of Optical Fiber Communications Conference, Anaheim, CA, 2002.

Richardson, K. A.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, k. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeniuve, “Nonlinear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 256&257, 353–360 (1999).
[Crossref]

Rode, A.

Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Exp. 12, 5140–5145 (2004).
[Crossref]

Rode, A. V.

S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Exp. 15, 14414 (2007).
[Crossref]

Rode, A.V.

R.P. Wang, C.J. Zha, A.V. Rode, S.J. Madden, and B. Luther-Davies, “Thermal Characterization of Ge-As-Se Glasses by Differential Scanning Calorimetry,” J. Mater. Sci. Materials in Electronics 18, 419–422, (2007).
[Crossref]

R.P. Wang, A.V. Rode, C.J. Zha, S.J. Madden, and B. Luther-Davies, “Annealing induced phase transformation in amorphous As2S3 films,” J. Appl. Phys. 100 (2006).

Rouvillain, D.

Ruan, Y.

Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Exp. 12, 5140–5145 (2004).
[Crossref]

Said, A.A.

M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum. Electron. 26, 760–769 (1990).
[Crossref]

Sanghera, J. S.

Sasaoka, E.

Schulte, A.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, k. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeniuve, “Nonlinear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 256&257, 353–360 (1999).
[Crossref]

Seguineau, F.

Shaw, L. B.

Sheik-Bahae, M.

M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum. Electron. 26, 760–769 (1990).
[Crossref]

Shiek-Bahae, M.

M. Shiek-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum. Electron. 27, 1296–1309 (1991).
[Crossref]

Shim, H.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, k. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeniuve, “Nonlinear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 256&257, 353–360 (1999).
[Crossref]

Shirafuji, J.

N. Kumagai, J. Shirafuji, and Y. Inuishi, “Raman and Infrared Studies on Vibrational Properties of Ge-Se glasses,” J. Phys. Soc. Jpn. 42, 1262–1268 (1977).
[Crossref]

Smektala, F.

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064 µm,” Opt. Mat. 25, 231–237 (2004).
[Crossref]

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high nonlinear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435–1440 (2001).
[Crossref]

F. Smektala, C. Quemard, L. Leniendre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large nonlinear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[Crossref]

Smith, A.

C. Zha, R.P. Wang, A. Smith, A. Prasad, R. A. Jarvis, and B. Luther-Davies, “Optical properties and structural correlations of GeAsSe chalcogenide glasses,” J. Mater. Sci. Materials in Electronics 18, 389–392 (2007).
[Crossref]

Solajcic, M.

J. T. Gopinath, M. Solajcic, and E. P. Ippen, “Third order nonlinearities in Ge-As-Se based glasses for telecommunications applications,” J. Appl. Phys. 96, 6931–6933 (2004).
[Crossref]

Stegeman, G.I.

G.I. Stegeman and E.W. Wright, “All-Optical Waveguide Switching,” Opt. Quantum Electron. 22, 95–122, (1990).
[Crossref]

Steinvurzel, P.

G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, “40 Gbit/s pseudo-linear transmission over one million kilometers,” in Proceedings of Optical Fiber Communications Conference, Anaheim, CA, 2002.

Su, Y.

G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, “40 Gbit/s pseudo-linear transmission over one million kilometers,” in Proceedings of Optical Fiber Communications Conference, Anaheim, CA, 2002.

Suetsugu, Y.

Suzuki, K.

M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear Refractive Index measurement in Chalcogenide Glass Fibres by Self Phase Modulation,” Appl. Phys. Lett. 60, 1153–1154 (1992).
[Crossref]

Ta’eed, V. G.

S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Exp. 15, 14414 (2007).
[Crossref]

Takagi, M.

Tanaka, K.

K. Tanaka, “Nonlinear optics in glasses: How can we analyse?,” J. Phys. Chem. Solids 68, 896–900 (2007).
[Crossref]

K. Tanaka, “Structural Phase Transitions in Chalcogenide Glass,” Phys. Rev. B 39, 1270–1279 (1989).
[Crossref]

Troles, J.

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064 µm,” Opt. Mat. 25, 231–237 (2004).
[Crossref]

Van Stryland, E. W.

M. Shiek-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum. Electron. 27, 1296–1309 (1991).
[Crossref]

Van Stryland, E.W

M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum. Electron. 26, 760–769 (1990).
[Crossref]

Viens, J. F.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, k. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeniuve, “Nonlinear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 256&257, 353–360 (1999).
[Crossref]

Villeniuve, A.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, k. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeniuve, “Nonlinear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 256&257, 353–360 (1999).
[Crossref]

Vogel, E. M.

E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32, 231–254 (1991).

Wang, F.

P. Boolchand, D. Georgiev, T. Qu, F. Wang, L. Cai, and S. Chakravarty, “Nanoscale phase separation effects near r=2.4 and 2.67 and rigidity transitions in chalcogenide glasses,” C.R Chimie 11, 713–724 (2003).

Wang, R.P.

R.P. Wang, C.J. Zha, A.V. Rode, S.J. Madden, and B. Luther-Davies, “Thermal Characterization of Ge-As-Se Glasses by Differential Scanning Calorimetry,” J. Mater. Sci. Materials in Electronics 18, 419–422, (2007).
[Crossref]

C. Zha, R.P. Wang, A. Smith, A. Prasad, R. A. Jarvis, and B. Luther-Davies, “Optical properties and structural correlations of GeAsSe chalcogenide glasses,” J. Mater. Sci. Materials in Electronics 18, 389–392 (2007).
[Crossref]

R.P. Wang, A.V. Rode, C.J. Zha, S.J. Madden, and B. Luther-Davies, “Annealing induced phase transformation in amorphous As2S3 films,” J. Appl. Phys. 100 (2006).

Weber, M. J.

E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32, 231–254 (1991).

Wei, T.H.

M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum. Electron. 26, 760–769 (1990).
[Crossref]

Wise, F. W.

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
[Crossref]

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se Glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822–824 (2002).
[Crossref]

Wright, E.W.

G.I. Stegeman and E.W. Wright, “All-Optical Waveguide Switching,” Opt. Quantum Electron. 22, 95–122, (1990).
[Crossref]

Zha, C.

C. Zha, R.P. Wang, A. Smith, A. Prasad, R. A. Jarvis, and B. Luther-Davies, “Optical properties and structural correlations of GeAsSe chalcogenide glasses,” J. Mater. Sci. Materials in Electronics 18, 389–392 (2007).
[Crossref]

Zha, C.J.

R.P. Wang, C.J. Zha, A.V. Rode, S.J. Madden, and B. Luther-Davies, “Thermal Characterization of Ge-As-Se Glasses by Differential Scanning Calorimetry,” J. Mater. Sci. Materials in Electronics 18, 419–422, (2007).
[Crossref]

R.P. Wang, A.V. Rode, C.J. Zha, S.J. Madden, and B. Luther-Davies, “Annealing induced phase transformation in amorphous As2S3 films,” J. Appl. Phys. 100 (2006).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear Refractive Index measurement in Chalcogenide Glass Fibres by Self Phase Modulation,” Appl. Phys. Lett. 60, 1153–1154 (1992).
[Crossref]

C.R Chimie (1)

P. Boolchand, D. Georgiev, T. Qu, F. Wang, L. Cai, and S. Chakravarty, “Nanoscale phase separation effects near r=2.4 and 2.67 and rigidity transitions in chalcogenide glasses,” C.R Chimie 11, 713–724 (2003).

Electron. Lett. (1)

H.C. Nguyen, K. Finsterbusch, D.J. Moss, and B.J. Eggleton, “Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre,” Electron. Lett. 42, 571–572 (2006).
[Crossref]

IEEE J. Quantum. Electron. (2)

M. Shiek-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum. Electron. 27, 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum. Electron. 26, 760–769 (1990).
[Crossref]

IEEE Photon. Technol. Lett. (2)

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se Glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822–824 (2002).
[Crossref]

Z. J. Huang, A. Gray, I. Khrushchev, and I. Bennion, “10-Gb/s transmission over 100 mm of standard fiber using 2R regeneration in an optical loop mirror,” IEEE Photon. Technol. Lett. 162526–2528 (2004).
[Crossref]

J. Appl. Phys. (2)

R.P. Wang, A.V. Rode, C.J. Zha, S.J. Madden, and B. Luther-Davies, “Annealing induced phase transformation in amorphous As2S3 films,” J. Appl. Phys. 100 (2006).

J. T. Gopinath, M. Solajcic, and E. P. Ippen, “Third order nonlinearities in Ge-As-Se based glasses for telecommunications applications,” J. Appl. Phys. 96, 6931–6933 (2004).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Sci. Materials in Electronics (2)

C. Zha, R.P. Wang, A. Smith, A. Prasad, R. A. Jarvis, and B. Luther-Davies, “Optical properties and structural correlations of GeAsSe chalcogenide glasses,” J. Mater. Sci. Materials in Electronics 18, 389–392 (2007).
[Crossref]

R.P. Wang, C.J. Zha, A.V. Rode, S.J. Madden, and B. Luther-Davies, “Thermal Characterization of Ge-As-Se Glasses by Differential Scanning Calorimetry,” J. Mater. Sci. Materials in Electronics 18, 419–422, (2007).
[Crossref]

J. Non-Cryst. Solids (3)

P. Němec, B. Frumarová, and M. Frumar, “Structure and Properties of pure and Pr3+ doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270, 137 (2000).
[Crossref]

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, k. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeniuve, “Nonlinear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 256&257, 353–360 (1999).
[Crossref]

F. Smektala, C. Quemard, L. Leniendre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large nonlinear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[Crossref]

J. Phys. Chem. Solids (2)

K. Tanaka, “Nonlinear optics in glasses: How can we analyse?,” J. Phys. Chem. Solids 68, 896–900 (2007).
[Crossref]

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high nonlinear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435–1440 (2001).
[Crossref]

J. Phys. Soc. Jpn. (1)

N. Kumagai, J. Shirafuji, and Y. Inuishi, “Raman and Infrared Studies on Vibrational Properties of Ge-Se glasses,” J. Phys. Soc. Jpn. 42, 1262–1268 (1977).
[Crossref]

Mat. Res. Soc. Symp. Proc. (1)

Tao Qu, D.G. Georgiev, P. Boolchand, and M. Micoulaut, “The Intermediate Phase in Ternary GexAsxSe1-2x Glasses,” Mat. Res. Soc. Symp. Proc. 754CC8.1.1– CC8.1.12 (2003).

Opt. Exp. (2)

S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Exp. 15, 14414 (2007).
[Crossref]

Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Exp. 12, 5140–5145 (2004).
[Crossref]

Opt. Lett. (2)

Opt. Mat. (1)

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064 µm,” Opt. Mat. 25, 231–237 (2004).
[Crossref]

Opt. Quantum Electron. (1)

G.I. Stegeman and E.W. Wright, “All-Optical Waveguide Switching,” Opt. Quantum Electron. 22, 95–122, (1990).
[Crossref]

Phys. Chem. Glasses (1)

E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32, 231–254 (1991).

Phys. Rev. B (1)

K. Tanaka, “Structural Phase Transitions in Chalcogenide Glass,” Phys. Rev. B 39, 1270–1279 (1989).
[Crossref]

Other (3)

M. Popescu, Non-crystalline Chalcogenides, (Kluwer Academic Publishers, 2000).

Borisova, Glassy Semiconductors, (Plenum Press1981).

G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, “40 Gbit/s pseudo-linear transmission over one million kilometers,” in Proceedings of Optical Fiber Communications Conference, Anaheim, CA, 2002.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Linear absorption loss profile at 1200 nm, with varying Ge content, for bulk glasses

Fig. 2.
Fig. 2.

Variation of bandgap (Eg, open squares) and glass transition temperature (Tg, filled circles) with Ge content for Ge-As-Se bulk glasses

Fig. 3.
Fig. 3.

Measured Raman Spectra for (a) low Germanium and (b) high Germanium compositions

Fig. 4.
Fig. 4.

Defect bond concentration corresponding to integrated area of Raman peak for varying Ge content

Fig. 5.
Fig. 5.

Linear (measured at 1550 nm) and nonlinear (measured at 1500 nm) refractive indices of Ge-As-Se bulk compositions

Fig. 6.
Fig. 6.

Dispersion of nonlinear refractive index with bandgap compared with prediction of the model introduced by Sheik-Bahae et al [30].

Tables (1)

Tables Icon

Table 1. Compositions synthesized and co-ordination numbers

Metrics