Abstract

A full and rigorous vector diffraction model for a multilayered optical disc is described where three vector diffraction processes, namely the focus of the reading light, the interaction with bits and the detection part, are all considered. Moreover, the reflected electric fields resulting from the infinite number of bounces at the multilayered optical disc are also involved. As an example, the detected power is calculated when the reading spot is scanned over the disc under the case of the circularly polarized illumination.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. H. Hopkins, “Diffraction theory of laser read-out systems for optical video disks,” J. Opt. Soc. Am. 69, 4–24 (1979).
    [Crossref]
  2. X. Cheng, H. Jia, and D. Xu, “Vector diffraction analysis of optical disk readout,” Appl. Opt. 39, 6436–6440 (2000).
    [Crossref]
  3. J. M. Brok and H. P. Urbach, “Rigorous model of the scattering of a focused spot by a grating and its application in optical recording,” J. Opt. Soc. Am. A 20, 256–272 (2003).
    [Crossref]
  4. W. H. Yeh, L. Li, and M. Mansuripur, “Computation of effective groove depth in an optical disk with vector diffraction theory,” Appl. Opt. 39, 316–329 (2000).
    [Crossref]
  5. J. B. Judkins, C. W. Haggans, and R. W. Ziolkowski, “Two-dimensional finite-difference time-domain simulation for rewritable optical disk surface structure design,” Appl. Opt. 35, 2477–2487 (1996).
    [Crossref] [PubMed]
  6. W. C. Liu and M. W. Kowarz, “Vector diffraction from subwavelength optical disk structures: twodimensional modeling of near-field profiles, far-field intensities, and detector signals from a DVD,” Appl. Opt. 38, 3787–3797 (1999).
    [Crossref]
  7. A. S. van de Nes, J. J. M. Braat, and S. F. Pereira, “High-density optical data storage,” Rep. Prog. Phys. 69, 2323–2363 (2006).
    [Crossref]
  8. H. Guo, S. Zhuang, J. Chen, and Z. Liang, “Multilayered optical memory with bits stored as refractive index change. I. Electromagnetic theory,” J. Opt. Soc. Am. A 24, 1776–1785 (2007).
    [Crossref]
  9. H. Guo, J. Chen, and S. Zhuang, “Resolution of aplanatic systems with various semiapertures, viewed from the two sides of the diffracting aperture,” J. Opt. Soc. Am. A 23, 2756–2763 (2006).
    [Crossref]
  10. K. A. Michalski and J. R. Mosig, “Multilayered media Green’s functions in integral equation formulations. IEEE Trans Antennas Propag,” IEEE Trans. Antennas. Propag. 45, 508–519 (1997).
    [Crossref]
  11. S. Barkeshli and P. H. Pathak, “On the dyadic Green’s function for a planar multilayered dielectric /magnetic media,” IEEE Trans. Microwave Theory Tech. 40, 128–142 (1992).
    [Crossref]
  12. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE PRESS, 1994), p. 197.
  13. O. J. F. Martin, A. Dereux, and C. Girard, “Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape,” J. Opt. Soc. Am. A 11, 1073–1080 (1994).
    [Crossref]
  14. H. Guo, S. Zhuang, J. Chen, and Z. Liang, “Imaging theory of an aplanatic system with a stratified medium based on the method for a vector coherent transfer function,” Opt. Lett. 31, 2978–2980 (2006).
    [Crossref] [PubMed]

2007 (1)

2006 (3)

2003 (1)

2000 (2)

1999 (1)

1997 (1)

K. A. Michalski and J. R. Mosig, “Multilayered media Green’s functions in integral equation formulations. IEEE Trans Antennas Propag,” IEEE Trans. Antennas. Propag. 45, 508–519 (1997).
[Crossref]

1996 (1)

1994 (1)

1992 (1)

S. Barkeshli and P. H. Pathak, “On the dyadic Green’s function for a planar multilayered dielectric /magnetic media,” IEEE Trans. Microwave Theory Tech. 40, 128–142 (1992).
[Crossref]

1979 (1)

Barkeshli, S.

S. Barkeshli and P. H. Pathak, “On the dyadic Green’s function for a planar multilayered dielectric /magnetic media,” IEEE Trans. Microwave Theory Tech. 40, 128–142 (1992).
[Crossref]

Braat, J. J. M.

A. S. van de Nes, J. J. M. Braat, and S. F. Pereira, “High-density optical data storage,” Rep. Prog. Phys. 69, 2323–2363 (2006).
[Crossref]

Brok, J. M.

Chen, J.

Cheng, X.

Dereux, A.

Felsen, L. B.

L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE PRESS, 1994), p. 197.

Girard, C.

Guo, H.

Haggans, C. W.

Hopkins, H. H.

Jia, H.

Judkins, J. B.

Kowarz, M. W.

Li, L.

Liang, Z.

Liu, W. C.

Mansuripur, M.

Marcuvitz, N.

L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE PRESS, 1994), p. 197.

Martin, O. J. F.

Michalski, K. A.

K. A. Michalski and J. R. Mosig, “Multilayered media Green’s functions in integral equation formulations. IEEE Trans Antennas Propag,” IEEE Trans. Antennas. Propag. 45, 508–519 (1997).
[Crossref]

Mosig, J. R.

K. A. Michalski and J. R. Mosig, “Multilayered media Green’s functions in integral equation formulations. IEEE Trans Antennas Propag,” IEEE Trans. Antennas. Propag. 45, 508–519 (1997).
[Crossref]

Pathak, P. H.

S. Barkeshli and P. H. Pathak, “On the dyadic Green’s function for a planar multilayered dielectric /magnetic media,” IEEE Trans. Microwave Theory Tech. 40, 128–142 (1992).
[Crossref]

Pereira, S. F.

A. S. van de Nes, J. J. M. Braat, and S. F. Pereira, “High-density optical data storage,” Rep. Prog. Phys. 69, 2323–2363 (2006).
[Crossref]

Urbach, H. P.

van de Nes, A. S.

A. S. van de Nes, J. J. M. Braat, and S. F. Pereira, “High-density optical data storage,” Rep. Prog. Phys. 69, 2323–2363 (2006).
[Crossref]

Xu, D.

Yeh, W. H.

Zhuang, S.

Ziolkowski, R. W.

Appl. Opt. (4)

IEEE Trans. Antennas. Propag. (1)

K. A. Michalski and J. R. Mosig, “Multilayered media Green’s functions in integral equation formulations. IEEE Trans Antennas Propag,” IEEE Trans. Antennas. Propag. 45, 508–519 (1997).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

S. Barkeshli and P. H. Pathak, “On the dyadic Green’s function for a planar multilayered dielectric /magnetic media,” IEEE Trans. Microwave Theory Tech. 40, 128–142 (1992).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

Opt. Lett. (1)

Rep. Prog. Phys. (1)

A. S. van de Nes, J. J. M. Braat, and S. F. Pereira, “High-density optical data storage,” Rep. Prog. Phys. 69, 2323–2363 (2006).
[Crossref]

Other (1)

L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE PRESS, 1994), p. 197.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic diagram of the read-in and the readout optical systems of a multilayered disc

Fig. 2.
Fig. 2.

Structure of a monolayer optical disc.

Fig. 3.
Fig. 3.

The detected power when the reading spot is scanned over the disc. Here, the bits compose of a binary code “0101110110”.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

E ~ r ( s N ; z N 1 ) = j M 12 cos 1 2 θ o cos 1 2 θ N exp ( j k N cos θ N d s )
× { x [ ( cos θ o sin 2 φ + cos θ N cos 2 φ ) e ox + ( cos θ N cos θ o ) sin φ cos φ e oy ]
+ y [ ( cos θ N + cos θ o ) sin φ cos φ e ox + ( cos θ o cos 2 φ + cos θ N sin 2 φ ) e oy ]
z sin θ N ( cos φ e ox + sin φ e oy ) } ,
H ~ r ( s N ; z N 1 ) = s N × E ~ r ( s N ; z N 1 ) .
E r ( x , y , z N 1 ) = λ N 2 E ~ r ( s N ; z N 1 ) exp [ j k N ( s N x x + s N y y ) ] d s N x d s N y ,
H r ( x , y , z N 1 ) = ( ω μ 0 ) 1 k N λ N 2 H ~ r ( s N ; z N 1 ) exp [ j k N ( s N x x + s N y y ) ] d s N x d s N y ,
J s ( x , y , z N 1 ) = z × H r ( x , y , z N 1 ) ,
M s ( x , y , z N 1 ) = z × E r ( x , y , z N 1 ) .
E r ( x , y , z p ) = j ω μ o G EJ ( r ; r ) · J s ( r ) d x d y G EM ( r ; r ) · M s ( r ) d x d y ,
G EJ < ( r ; r ) = ( 2 π ) 2 G ~ EJ < ( s N ) exp { j k N [ s N x ( x x ) + s N y ( y y ) ] } d s N x d s N y ,
G ~ EJ < ( s N ) = j ϒ m , N < 2 k t 2 κ m ( x x k x 2 κ m κ N ϕ m + < + x y k x k y κ m κ N ϕ m + < + x z k t 2 k x κ m ϕ m + <
+ y x k x k y κ m κ N ϕ m + < + y y k y 2 κ m κ N ϕ m + < + y z k t 2 k y κ m ϕ m + <
+ z x k t 2 k x κ N ϕ m < + z y k t 2 k y κ N ϕ m < + z z k t 4 ϕ m < )
j k N 2 ϒ m , N < ϕ m + < 2 k t 2 κ N ( x x k y 2 x y k x k y y x k x k y + y y k x 2 ) ,
ϕ m ± < = exp [ j κ m ( z p z m 1 ) ] ± R m < ( z m 1 ) exp [ j κ m ( z p z m 1 ) ] ,
G ~ EM < ( s N ) = k N 2 ϒ m , N < 2 k t 2 κ m ( x x k x k y κ m ϕ m + < x y k x 2 κ m ϕ m + < + y x k y 2 κ m ϕ m + < y y k x k y κ m ϕ m + <
+ z x k y k t 2 ϕ m < z y k x k t 2 ϕ m < ) + k N 2 ϒ m , N < ϕ m + < 2 k t 2 κ N ( x x k x k y κ N
x y k y 2 κ N x z k y k t 2 + y x k x 2 κ N + y y k x k y κ N + y z k x k t 2 ) .
E ̃ r ( s N , z p ) = jk N 1 G ̃ EJ < ( s N ) · [ x H ̃ ry ( · ) - y H ̃ rx ( · ) ] + k N 2 G ̃ EJM < ( s N ) · [ x E ̃ ry ( · ) - y E ̃ rx ( · ) ] ,
E r ( s N , z P ) = j M 12 cos 1 2 θ o cos 1 2 θ N exp ( j k N cos θ N d s )
× { x [ ( ϒ m , N < ϕ m + < cos θ N cos 2 φ + ϒ m , N < ϕ m + < cos θ o sin 2 φ ) e ox
+ ( ϒ m , N < ϕ m + < cos θ N ϒ m , N < ϕ m + < cos θ o ) sin φ cos φ e oy ]
+ y [ ( ϒ m , N < ϕ m + < cos θ N ϒ m , N < ϕ m + < cos θ o ) sin φ cos φ e ox
+ ( ϒ m , N < ϕ m + < cos θ N sin 2 φ e oy + ϒ m , N < ϕ m + < cos θ o cos 2 φ ) e oy ]
z ϒ m , N < ϕ m < cos 1 θ m cos θ N sin θ m ( cos φ e ox + sin φ e oy ) } .
E rx = jC 12 [ ( A 0 + A 2 cos 2 β ) e ox + A 2 sin 2 β e oy ] ,
E ry = jC 12 [ A 2 sin 2 β e ox + ( A 0 A 2 cos 2 β ) e oy ] ,
E rz = 2 C 12 A 1 ( cos β e ox + sin β e oy ) } ,
E ( r ) = E r ( r ) + k = 1 N p G EJ ( r ; r k ) · W k V ( r k ) E ( r k ) ,
E s ( r ) = k = 1 N p G EJ ( r ; r′ k ) · W k V ( r k ) E p ( r k )

Metrics