Abstract

A full and rigorous vector diffraction model for a multilayered optical disc is described where three vector diffraction processes, namely the focus of the reading light, the interaction with bits and the detection part, are all considered. Moreover, the reflected electric fields resulting from the infinite number of bounces at the multilayered optical disc are also involved. As an example, the detected power is calculated when the reading spot is scanned over the disc under the case of the circularly polarized illumination.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Hopkins, H.H.  (1979). Diffraction theory of laser read-out systems for optical video disks. J. Opt. Soc. Am. 69, 4-24.
    [CrossRef]
  2. Cheng, X. , Jia, H. , and Xu, D.  (2000). Vector diffraction analysis of optical disk readout. Appl. Opt. 39, 6436-6440.
    [CrossRef]
  3. Brok, J.M. , and Urbach, H.P.  (2003). Rigorous model of the scattering of a focused spot by a grating and its application in optical recording. J. Opt. Soc. Am. A 20, 256-272.
    [CrossRef]
  4. Yeh, W.H. , Li, L. , and Mansuripur, M.  (2000). Computation of effective groove depth in an optical disk with vector diffraction theory. Appl. Opt. 39, 316-329.
    [CrossRef]
  5. Judkins, J.B. , Haggans, C.W. , and Ziolkowski, R.W.  (1996). Two-dimensional finite- difference time-domain simulation for rewritable optical disk surface structure design. Appl. Opt. 35, 2477-2487.
    [CrossRef] [PubMed]
  6. Liu, W.C. , and Kowarz, M.W.  (1999). Vector diffraction from subwavelength optical disk structures: two-dimensional modeling of near-field profiles, far-field intensities, and detector signals from a DVD. Appl. Opt. 38, 3787-3797.
    [CrossRef]
  7. van de Nes, A.S. , Braat, J.J.M. , and Pereira, S.F.  (2006). High-density optical data storage. Rep. Prog. Phys. 69, 2323-2363.
    [CrossRef]
  8. Guo, H. , Zhuang, S. , Chen, J. , and Liang, Z.  (2007). Multilayered optical memory with bits stored as refractive index change. I. Electromagnetic theory. J. Opt. Soc. Am. A 24, 1776-1785.
    [CrossRef]
  9. Guo, H. , Chen, J. , and Zhuang, S.  (2006). Resolution of aplanatic systems with various semiapertures, viewed from the two sides of the diffracting aperture. J. Opt. Soc. Am. A 23, 2756-2763.
    [CrossRef]
  10. Michalski, K.A. , and Mosig, J.R.  (1997). Multilayered media Green’s functions in integral equation formulations. IEEE Trans Antennas Propag. IEEE Trans. Antenn. Propag. 45, 508-519.
    [CrossRef]
  11. Barkeshli, S. , and Pathak, P.H.  (1992). On the dyadic Green’s function for a planar multilayered dielectric /magnetic media. IEEE Trans. Microw. Theory Tech. 40, 128-142.
    [CrossRef]
  12. Felsen, L.B. , and Marcuvitz, N. Radiation and Scattering of Waves (IEEE PRESS, 1994), p. 197.
  13. Martin, O.J.F. , Dereux, A. , and Girard, C.  (1994). Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape. J. Opt. Soc. Am. A 11, 1073-1080.
    [CrossRef]
  14. Guo, H. , Zhuang, S. , Chen, J. , and Liang, Z.  (2006). Imaging theory of an aplanatic system with a stratified medium based on the method for a vector coherent transfer function. Opt. Lett. 31, 2978-2980.
    [CrossRef] [PubMed]

2007

2006

2003

2000

1999

1997

Michalski, K.A. , and Mosig, J.R.  (1997). Multilayered media Green’s functions in integral equation formulations. IEEE Trans Antennas Propag. IEEE Trans. Antenn. Propag. 45, 508-519.
[CrossRef]

1996

1994

1992

Barkeshli, S. , and Pathak, P.H.  (1992). On the dyadic Green’s function for a planar multilayered dielectric /magnetic media. IEEE Trans. Microw. Theory Tech. 40, 128-142.
[CrossRef]

1979

Barkeshli,

Barkeshli, S. , and Pathak, P.H.  (1992). On the dyadic Green’s function for a planar multilayered dielectric /magnetic media. IEEE Trans. Microw. Theory Tech. 40, 128-142.
[CrossRef]

Braat, A.S.

van de Nes, A.S. , Braat, J.J.M. , and Pereira, S.F.  (2006). High-density optical data storage. Rep. Prog. Phys. 69, 2323-2363.
[CrossRef]

Brok,

Chen, H.

Chen, S.

Cheng,

Dereux, O.J.F.

Girard, A.

Guo,

Haggans, J.B.

Hopkins,

Jia, X.

Judkins,

Kowarz, W.C.

Li, W.H.

Liang, J.

Liu,

Mansuripur, L.

Martin,

Michalski,

Michalski, K.A. , and Mosig, J.R.  (1997). Multilayered media Green’s functions in integral equation formulations. IEEE Trans Antennas Propag. IEEE Trans. Antenn. Propag. 45, 508-519.
[CrossRef]

Mosig, K.A.

Michalski, K.A. , and Mosig, J.R.  (1997). Multilayered media Green’s functions in integral equation formulations. IEEE Trans Antennas Propag. IEEE Trans. Antenn. Propag. 45, 508-519.
[CrossRef]

Pathak, S.

Barkeshli, S. , and Pathak, P.H.  (1992). On the dyadic Green’s function for a planar multilayered dielectric /magnetic media. IEEE Trans. Microw. Theory Tech. 40, 128-142.
[CrossRef]

Pereira, J.J.M.

van de Nes, A.S. , Braat, J.J.M. , and Pereira, S.F.  (2006). High-density optical data storage. Rep. Prog. Phys. 69, 2323-2363.
[CrossRef]

Urbach, J.M.

van de Nes,

van de Nes, A.S. , Braat, J.J.M. , and Pereira, S.F.  (2006). High-density optical data storage. Rep. Prog. Phys. 69, 2323-2363.
[CrossRef]

Xu, H.

Yeh,

Zhuang, H.

Zhuang, J.

Ziolkowski, C.W.

Appl. Opt.

IEEE Trans. Antenn. Propag.

Michalski, K.A. , and Mosig, J.R.  (1997). Multilayered media Green’s functions in integral equation formulations. IEEE Trans Antennas Propag. IEEE Trans. Antenn. Propag. 45, 508-519.
[CrossRef]

IEEE Trans. Microw. Theory Tech.

Barkeshli, S. , and Pathak, P.H.  (1992). On the dyadic Green’s function for a planar multilayered dielectric /magnetic media. IEEE Trans. Microw. Theory Tech. 40, 128-142.
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Lett.

Rep. Prog. Phys.

van de Nes, A.S. , Braat, J.J.M. , and Pereira, S.F.  (2006). High-density optical data storage. Rep. Prog. Phys. 69, 2323-2363.
[CrossRef]

Other

Felsen, L.B. , and Marcuvitz, N. Radiation and Scattering of Waves (IEEE PRESS, 1994), p. 197.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic diagram of the read-in and the readout optical systems of a multilayered disc

Fig. 2.
Fig. 2.

Structure of a monolayer optical disc.

Fig. 3.
Fig. 3.

The detected power when the reading spot is scanned over the disc. Here, the bits compose of a binary code “0101110110”.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

E ~ r ( s N ; z N 1 ) = j M 12 cos 1 2 θ o cos 1 2 θ N exp ( j k N cos θ N d s )
× { x [ ( cos θ o sin 2 φ + cos θ N cos 2 φ ) e ox + ( cos θ N cos θ o ) sin φ cos φ e oy ]
+ y [ ( cos θ N + cos θ o ) sin φ cos φ e ox + ( cos θ o cos 2 φ + cos θ N sin 2 φ ) e oy ]
z sin θ N ( cos φ e ox + sin φ e oy ) } ,
H ~ r ( s N ; z N 1 ) = s N × E ~ r ( s N ; z N 1 ) .
E r ( x , y , z N 1 ) = λ N 2 E ~ r ( s N ; z N 1 ) exp [ j k N ( s N x x + s N y y ) ] d s N x d s N y ,
H r ( x , y , z N 1 ) = ( ω μ 0 ) 1 k N λ N 2 H ~ r ( s N ; z N 1 ) exp [ j k N ( s N x x + s N y y ) ] d s N x d s N y ,
J s ( x , y , z N 1 ) = z × H r ( x , y , z N 1 ) ,
M s ( x , y , z N 1 ) = z × E r ( x , y , z N 1 ) .
E r ( x , y , z p ) = j ω μ o G EJ ( r ; r ) · J s ( r ) d x d y G EM ( r ; r ) · M s ( r ) d x d y ,
G EJ < ( r ; r ) = ( 2 π ) 2 G ~ EJ < ( s N ) exp { j k N [ s N x ( x x ) + s N y ( y y ) ] } d s N x d s N y ,
G ~ EJ < ( s N ) = j ϒ m , N < 2 k t 2 κ m ( x x k x 2 κ m κ N ϕ m + < + x y k x k y κ m κ N ϕ m + < + x z k t 2 k x κ m ϕ m + <
+ y x k x k y κ m κ N ϕ m + < + y y k y 2 κ m κ N ϕ m + < + y z k t 2 k y κ m ϕ m + <
+ z x k t 2 k x κ N ϕ m < + z y k t 2 k y κ N ϕ m < + z z k t 4 ϕ m < )
j k N 2 ϒ m , N < ϕ m + < 2 k t 2 κ N ( x x k y 2 x y k x k y y x k x k y + y y k x 2 ) ,
ϕ m ± < = exp [ j κ m ( z p z m 1 ) ] ± R m < ( z m 1 ) exp [ j κ m ( z p z m 1 ) ] ,
G ~ EM < ( s N ) = k N 2 ϒ m , N < 2 k t 2 κ m ( x x k x k y κ m ϕ m + < x y k x 2 κ m ϕ m + < + y x k y 2 κ m ϕ m + < y y k x k y κ m ϕ m + <
+ z x k y k t 2 ϕ m < z y k x k t 2 ϕ m < ) + k N 2 ϒ m , N < ϕ m + < 2 k t 2 κ N ( x x k x k y κ N
x y k y 2 κ N x z k y k t 2 + y x k x 2 κ N + y y k x k y κ N + y z k x k t 2 ) .
E ̃ r ( s N , z p ) = jk N 1 G ̃ EJ < ( s N ) · [ x H ̃ ry ( · ) - y H ̃ rx ( · ) ] + k N 2 G ̃ EJM < ( s N ) · [ x E ̃ ry ( · ) - y E ̃ rx ( · ) ] ,
E r ( s N , z P ) = j M 12 cos 1 2 θ o cos 1 2 θ N exp ( j k N cos θ N d s )
× { x [ ( ϒ m , N < ϕ m + < cos θ N cos 2 φ + ϒ m , N < ϕ m + < cos θ o sin 2 φ ) e ox
+ ( ϒ m , N < ϕ m + < cos θ N ϒ m , N < ϕ m + < cos θ o ) sin φ cos φ e oy ]
+ y [ ( ϒ m , N < ϕ m + < cos θ N ϒ m , N < ϕ m + < cos θ o ) sin φ cos φ e ox
+ ( ϒ m , N < ϕ m + < cos θ N sin 2 φ e oy + ϒ m , N < ϕ m + < cos θ o cos 2 φ ) e oy ]
z ϒ m , N < ϕ m < cos 1 θ m cos θ N sin θ m ( cos φ e ox + sin φ e oy ) } .
E rx = jC 12 [ ( A 0 + A 2 cos 2 β ) e ox + A 2 sin 2 β e oy ] ,
E ry = jC 12 [ A 2 sin 2 β e ox + ( A 0 A 2 cos 2 β ) e oy ] ,
E rz = 2 C 12 A 1 ( cos β e ox + sin β e oy ) } ,
E ( r ) = E r ( r ) + k = 1 N p G EJ ( r ; r k ) · W k V ( r k ) E ( r k ) ,
E s ( r ) = k = 1 N p G EJ ( r ; r′ k ) · W k V ( r k ) E p ( r k )

Metrics