Abstract

Long period fiber gratings in hollow-core air-silica photonic bandgap fibers were produced by use of high frequency, short duration, CO2 laser pulses to periodically modify the size, shape and distribution of air holes in the microstructured cladding. The resonant wavelength of these gratings is highly sensitivity to strain but insensitive to temperature, bend and external refractive index. These gratings can be used as stable spectral filters and novel sensors.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [Crossref] [PubMed]
  2. J. C. Knight, “Photonic Crystal Fibers,” Nature 424, 847–851 (2003).
    [Crossref] [PubMed]
  3. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
    [Crossref] [PubMed]
  4. B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, and H. Sabert, “Low-loss (1.7dB/km) hollow-core photonic bandgap fiber,” in proceeding of OFC 2004, paper PDF24, Los Angeles, USA (2004).
  5. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
    [Crossref] [PubMed]
  6. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers” Science 301, 1702–1704 (2003).
    [Crossref] [PubMed]
  7. G. Humbert, J. C. Knight, G. Bouwmans, P. S. Russell, D. P. Williams, P. J. Roberts, and B. J. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12, 1477–1484 (2004).
    [Crossref] [PubMed]
  8. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004).
    [Crossref]
  9. Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B 105, 183–186 (2005).
    [Crossref]
  10. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
    [Crossref] [PubMed]
  11. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
    [Crossref] [PubMed]
  12. Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
    [Crossref]
  13. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24, 1460–1462 (1999).
    [Crossref]
  14. Y. P. Wang, L. M. Xiao, D. N. Wang, and W. Jin, “Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity,” Opt. Lett. 31, 3414–3416 (2006).
    [Crossref] [PubMed]
  15. K. Morishita and Y. Miyake, “Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change,” J. Lightwave Technol. 22, 625–630 (2004).
    [Crossref]
  16. J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, “Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure,” Opt. Lett. 29, 331–333 (2004).
    [Crossref] [PubMed]
  17. P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey, and B. J. Eggleton, “Long period grating resonances in photonic bandgap fiber,” Opt Express 14, 3007–3014 (2006).
    [Crossref] [PubMed]
  18. http://www.crystal-fibre.com.
  19. B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt Lett. 26, 1657–1659 (2001).
    [Crossref]
  20. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004).
    [Crossref] [PubMed]
  21. H. K. Kim, M. Digonnet, G. Kino, J. Shin, and S. Fan, “Simulation of the effect of the core ring on surface and air-core modes in photonic bandgap fibers,” Opt. Express 12, 3436–3442 (2004).
    [Crossref] [PubMed]
  22. G. Bouwmans, F. Luan, J. C. Knight, P. S. J. Russell, L. Farr, B. J. Mangan, and H. Sabert, “Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength,” Opt. Express 11, 1613–1620 (2003).
    [Crossref] [PubMed]
  23. J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 2472–2474 (2004).
    [Crossref]
  24. B. L. Bachim and T. K. Gaylord, “Polarization-dependent loss and birefringence in long-period fiber gratings,” Appl. Opt. 42, 6816–6823 (2003).
    [Crossref] [PubMed]
  25. D. Lee, Y. Jung, Y. S. Jeong, K. Oh, J. Kobelke, K. Schuster, and J. Kirchof, “Highly polarization-dependent periodic coupling in mechanically induced long period grating over air-silica fibers,” Opt. Lett. 31, 296–298 (2006).
    [Crossref] [PubMed]
  26. Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21, 1320–1327 (2003).
    [Crossref]
  27. H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
    [Crossref]
  28. Y. P. Wang and Y. J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously,” IEEE Sensors Journal 5, 839–843 (2005).
    [Crossref]

2006 (4)

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[Crossref]

Y. P. Wang, L. M. Xiao, D. N. Wang, and W. Jin, “Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity,” Opt. Lett. 31, 3414–3416 (2006).
[Crossref] [PubMed]

P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey, and B. J. Eggleton, “Long period grating resonances in photonic bandgap fiber,” Opt Express 14, 3007–3014 (2006).
[Crossref] [PubMed]

D. Lee, Y. Jung, Y. S. Jeong, K. Oh, J. Kobelke, K. Schuster, and J. Kirchof, “Highly polarization-dependent periodic coupling in mechanically induced long period grating over air-silica fibers,” Opt. Lett. 31, 296–298 (2006).
[Crossref] [PubMed]

2005 (3)

Y. P. Wang and Y. J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously,” IEEE Sensors Journal 5, 839–843 (2005).
[Crossref]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref] [PubMed]

Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B 105, 183–186 (2005).
[Crossref]

2004 (7)

2003 (6)

B. L. Bachim and T. K. Gaylord, “Polarization-dependent loss and birefringence in long-period fiber gratings,” Appl. Opt. 42, 6816–6823 (2003).
[Crossref] [PubMed]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21, 1320–1327 (2003).
[Crossref]

G. Bouwmans, F. Luan, J. C. Knight, P. S. J. Russell, L. Farr, B. J. Mangan, and H. Sabert, “Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength,” Opt. Express 11, 1613–1620 (2003).
[Crossref] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

J. C. Knight, “Photonic Crystal Fibers,” Nature 424, 847–851 (2003).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

2001 (1)

B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt Lett. 26, 1657–1659 (2001).
[Crossref]

1999 (2)

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24, 1460–1462 (1999).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

1998 (1)

H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
[Crossref]

1996 (1)

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Ahn, T. J.

B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt Lett. 26, 1657–1659 (2001).
[Crossref]

Allan, D. C.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Bachim, B. L.

Benabid, F.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Bhatia, V.

Birks, T. A.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Borrelli, N. F.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Bouwmans, G.

Chang, C. C.

H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
[Crossref]

Chung, Y.

B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt Lett. 26, 1657–1659 (2001).
[Crossref]

Couny, F.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref] [PubMed]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, and H. Sabert, “Low-loss (1.7dB/km) hollow-core photonic bandgap fiber,” in proceeding of OFC 2004, paper PDF24, Los Angeles, USA (2004).

Coupland, S.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, and H. Sabert, “Low-loss (1.7dB/km) hollow-core photonic bandgap fiber,” in proceeding of OFC 2004, paper PDF24, Los Angeles, USA (2004).

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Demokan, M. S.

J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 2472–2474 (2004).
[Crossref]

Digonnet, M.

Eggleton, B. J.

P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey, and B. J. Eggleton, “Long period grating resonances in photonic bandgap fiber,” Opt Express 14, 3007–3014 (2006).
[Crossref] [PubMed]

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24, 1460–1462 (1999).
[Crossref]

Fan, S.

Farr, L.

Fini, J. M.

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004).
[Crossref]

Flea, R.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, and H. Sabert, “Low-loss (1.7dB/km) hollow-core photonic bandgap fiber,” in proceeding of OFC 2004, paper PDF24, Los Angeles, USA (2004).

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Gaylord, T. K.

Han, W. T.

B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt Lett. 26, 1657–1659 (2001).
[Crossref]

Ho, H. L.

Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B 105, 183–186 (2005).
[Crossref]

Hoo, Y. L.

Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B 105, 183–186 (2005).
[Crossref]

Humbert, G.

Jeong, Y. S.

Jin, W.

Y. P. Wang, L. M. Xiao, D. N. Wang, and W. Jin, “Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity,” Opt. Lett. 31, 3414–3416 (2006).
[Crossref] [PubMed]

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[Crossref]

Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B 105, 183–186 (2005).
[Crossref]

J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 2472–2474 (2004).
[Crossref]

Ju, J.

Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B 105, 183–186 (2005).
[Crossref]

J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 2472–2474 (2004).
[Crossref]

Jung, Y.

Kim, B. H.

B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt Lett. 26, 1657–1659 (2001).
[Crossref]

Kim, D. Y.

B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt Lett. 26, 1657–1659 (2001).
[Crossref]

Kim, H. K.

Kim, J. C.

Kino, G.

Kirchof, J.

Knight, J. C.

Kobelke, J.

Koch, K. W.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004).
[Crossref] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Kuhlmey, B. T.

P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey, and B. J. Eggleton, “Long period grating resonances in photonic bandgap fiber,” Opt Express 14, 3007–3014 (2006).
[Crossref] [PubMed]

Langford, A.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, and H. Sabert, “Low-loss (1.7dB/km) hollow-core photonic bandgap fiber,” in proceeding of OFC 2004, paper PDF24, Los Angeles, USA (2004).

Lawman, M.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, and H. Sabert, “Low-loss (1.7dB/km) hollow-core photonic bandgap fiber,” in proceeding of OFC 2004, paper PDF24, Los Angeles, USA (2004).

Lee, B. H.

J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, “Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure,” Opt. Lett. 29, 331–333 (2004).
[Crossref] [PubMed]

B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt Lett. 26, 1657–1659 (2001).
[Crossref]

Lee, D.

Lee, K. S.

Lim, J. H.

Luan, F.

Magi, E. C.

P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey, and B. J. Eggleton, “Long period grating resonances in photonic bandgap fiber,” Opt Express 14, 3007–3014 (2006).
[Crossref] [PubMed]

Mangan, B. J.

Mason, M.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, and H. Sabert, “Low-loss (1.7dB/km) hollow-core photonic bandgap fiber,” in proceeding of OFC 2004, paper PDF24, Los Angeles, USA (2004).

Mason, M. W.

Miyake, Y.

Moore, E. D.

P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey, and B. J. Eggleton, “Long period grating resonances in photonic bandgap fiber,” Opt Express 14, 3007–3014 (2006).
[Crossref] [PubMed]

Morishita, K.

Muller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Müller, D.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Oh, K.

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Paek, U. C.

B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt Lett. 26, 1657–1659 (2001).
[Crossref]

Park, Y.

B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt Lett. 26, 1657–1659 (2001).
[Crossref]

Patrick, H. J.

H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
[Crossref]

Peng, G. D.

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[Crossref]

Ran, Z. L.

Rao, Y. J.

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[Crossref]

Y. P. Wang and Y. J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously,” IEEE Sensors Journal 5, 839–843 (2005).
[Crossref]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21, 1320–1327 (2003).
[Crossref]

Roberts, P. J.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref] [PubMed]

G. Humbert, J. C. Knight, G. Bouwmans, P. S. Russell, D. P. Williams, P. J. Roberts, and B. J. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12, 1477–1484 (2004).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, and H. Sabert, “Low-loss (1.7dB/km) hollow-core photonic bandgap fiber,” in proceeding of OFC 2004, paper PDF24, Los Angeles, USA (2004).

Russell, P. S.

G. Humbert, J. C. Knight, G. Bouwmans, P. S. Russell, D. P. Williams, P. J. Roberts, and B. J. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12, 1477–1484 (2004).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Russell, P. S. J.

Sabert, H.

Schuster, K.

Shin, J.

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Smith, C. M.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Spalter, S.

Steinvurzel, P.

P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey, and B. J. Eggleton, “Long period grating resonances in photonic bandgap fiber,” Opt Express 14, 3007–3014 (2006).
[Crossref] [PubMed]

Strasser, T. A.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Tomlinson, A.

Vengsarkar, A. M.

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Vohra, S. T.

H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
[Crossref]

Wang, D. N.

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[Crossref]

Y. P. Wang, L. M. Xiao, D. N. Wang, and W. Jin, “Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity,” Opt. Lett. 31, 3414–3416 (2006).
[Crossref] [PubMed]

Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B 105, 183–186 (2005).
[Crossref]

Wang, Y. P.

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[Crossref]

Y. P. Wang, L. M. Xiao, D. N. Wang, and W. Jin, “Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity,” Opt. Lett. 31, 3414–3416 (2006).
[Crossref] [PubMed]

Y. P. Wang and Y. J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously,” IEEE Sensors Journal 5, 839–843 (2005).
[Crossref]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21, 1320–1327 (2003).
[Crossref]

West, J. A.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Westbrook, P. S.

Williams, D. P.

Windeler, R. S.

Xiao, L. M.

Zhu, T.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105 (2006).
[Crossref]

Electron. Lett. (1)

H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 2472–2474 (2004).
[Crossref]

IEEE Sensors Journal (1)

Y. P. Wang and Y. J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously,” IEEE Sensors Journal 5, 839–843 (2005).
[Crossref]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (1)

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004).
[Crossref]

Nature (2)

J. C. Knight, “Photonic Crystal Fibers,” Nature 424, 847–851 (2003).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Opt Express (1)

P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey, and B. J. Eggleton, “Long period grating resonances in photonic bandgap fiber,” Opt Express 14, 3007–3014 (2006).
[Crossref] [PubMed]

Opt Lett. (1)

B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt Lett. 26, 1657–1659 (2001).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Science (3)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Sens. Actuators B (1)

Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B 105, 183–186 (2005).
[Crossref]

Other (2)

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, and H. Sabert, “Low-loss (1.7dB/km) hollow-core photonic bandgap fiber,” in proceeding of OFC 2004, paper PDF24, Los Angeles, USA (2004).

http://www.crystal-fibre.com.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scanning electron micrographs of PBF cross-sections (a) before and (b) after CO2 laser irradiation. (c) Periodic notches on PBF after 50 scanning cycles. (d) Evolution of the transmitted spectrum of LPFG with 40 periods and a grating pitch of 430µm with increasing number of scanning cycles (K=1st, 2nd, …50th). (e) Variation of LPFG resonant wavelengths with grating pitch (upper panel) and their transmission spectrums (lower panel). These LPFGs have 40 periods and were written at a position 5 to15cm away form the output end of 2m PBF. The PBF is pigtailed at both ends with SMF28 fibers. All transmission spectra were measured with an OSA with a resolution of 1nm.

Fig. 2.
Fig. 2.

(a). Near field image in a PBF without LPFG. (b) Near field images of an LPFG at the resonant wavelength of 1523.1nm when the LPFG was cut at 6th notch. (c) Near field images of the same LPFG observed at the 19th notch at 1523.1nm. (d) Near field images observed at the 19th notch when the light wavelength was tuned to 1540.0nm. The transmitted spectrum of the LPFG is illustrated in Fig. 1(d). The dot-dashed circle and the dashed curve in (c) outline the cross-sections, as illustrated in Figs. 1(a) and 1(b), of air-hole region before and after the CO2 laser irradiation, respectively.

Fig. 3.
Fig. 3.

(a). Transmitted spectrums of 1.1m PBF before (black and blue) and after (pink and red) an LPFG with a grating pitch of 395µm and 20 grating periods was created. The spectrums were observed with an OSA with a resolution of 0.01nm. The left (for black and pink traces) and right (for blue and red traces) axes are in the logarithmic and linear scales, respectively. The PBF is pigtailed with SMF28 fibers in both ends and the LPFG was written near the output end of the PBF. The square-insert (the green trace) shows the LPFG’s transmitted spectrum measured with a 1nm resolution, and the resonant wavelength is 1595.8nm. (b), (c), and (d) Far field images at the output of the LPFG at the wavelengths around the points labeled as ‘b’, ‘c’ and ‘d’ in the oval-insert in (a). The pigtail at the output end was cut to observe these images.

Fig. 4.
Fig. 4.

(a). PDL of PBF with and without an LPFG. The LPFG sample is the same as in Fig. 3. Measured resonant wavelength and peak transmitted attenuation of the LPFG as functions of temperature (b), curvature (c), and tensile strain (d).

Metrics