Abstract

Long period fiber gratings in hollow-core air-silica photonic bandgap fibers were produced by use of high frequency, short duration, CO2 laser pulses to periodically modify the size, shape and distribution of air holes in the microstructured cladding. The resonant wavelength of these gratings is highly sensitivity to strain but insensitive to temperature, bend and external refractive index. These gratings can be used as stable spectral filters and novel sensors.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Cregan, R.F. , Mangan, B.J. , Knight, J.C. , Birks, T.A. , Russell, P.S. , Roberts, P.J. , and Allan, D.C.  (1999). Single-mode photonic band gap guidance of light in air. Science 285, 1537-1539.
    [CrossRef] [PubMed]
  2. Knight, J.C.  (2003). Photonic Crystal Fibers. Nature 424, 847-851.
    [CrossRef] [PubMed]
  3. Smith, C.M. , Venkataraman, N. , Gallagher, M.T. , Muller, D. , West, J.A. , Borrelli, N.F. , Allan, D.C. , and Koch, K.W.  (2003). Low-loss hollow-core silica/air photonic bandgap fibre. Nature 424, 657-659.
    [CrossRef] [PubMed]
  4. Mangan, B.J. , Farr, L. , Langford, A. , Roberts, P.J. , Williams, D.P. , Couny, F. , Lawman, M. , Mason, M. , Coupland, S. , Flea, R. , and Sabert, H.  "Low-loss (1.7dB/km) hollow-core photonic bandgap fiber," in proceeding of OFC 2004, paper PDF24, Los Angeles, USA (2004).
  5. Roberts, P.J. , Couny, F. , Sabert, H. , Mangan, B.J. , Williams, D.P. , Farr, L. , Mason, M.W. , Tomlinson, A. , Birks, T.A. , Knight, J.C. , and Russell, P.S.J.  (2005). Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express 13, 236-244.
    [CrossRef] [PubMed]
  6. Ouzounov, D.G. , Ahmad, F.R. , Müller, D. , Venkataraman, N. , Gallagher, M.T. , Thomas, M.G. , Silcox, J. , Koch, K.W. , and Gaeta, A.L.  (2003). Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702-1704.
    [CrossRef] [PubMed]
  7. Humbert, G. , Knight, J.C. , Bouwmans, G. , Russell, P.S. , Williams, D.P. , Roberts, P.J. , and Mangan, B.J.  (2004). Hollow core photonic crystal fibers for beam delivery. Opt. Express 12, 1477-1484.
    [CrossRef] [PubMed]
  8. Fini, J.M.  (2004). Microstructure fibres for optical sensing in gases and liquids. Meas. Sci. Technol. 15, 1120-1128.
    [CrossRef]
  9. Hoo, Y.L. , Jin, W. , Ho, H.L. , Ju, J. , and Wang, D.N.  (2005). Gas diffusion measurement using hollow-core photonic bandgap fiber. Sens. Actuators B 105, 183-186.
    [CrossRef]
  10. Benabid, F. , Knight, J.C. , Antonopoulos, G. , and Russell, P.S.J.  (2002). Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399-402.
    [CrossRef] [PubMed]
  11. Bhatia, V. , and Vengsarkar, A.M.  (1996). Optical fiber long-period grating sensors. Opt. Lett. 21, 692-694.
    [CrossRef] [PubMed]
  12. Wang, Y.P. , Wang, D.N. , Jin, W. , Rao, Y.J. , and Peng, G.D.  (2006). Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber. Appl. Phys. Lett. 89, 151105.
    [CrossRef]
  13. Eggleton, B.J. , Westbrook, P.S. , Windeler, R.S. , Spalter, S. , and Strasser, T.A.  (1999). Grating resonances in air-silica microstructured optical fibers. Opt. Lett. 24, 1460-1462.
    [CrossRef]
  14. Wang, Y.P. , Xiao, L.M. , Wang, D.N. , and Jin, W.  (2006). Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity. Opt. Lett. 31, 3414-3416.
    [CrossRef] [PubMed]
  15. Morishita, K. , and Miyake, Y.  (2004). Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change. J. Lightwave Technol. 22, 625-630.
    [CrossRef]
  16. Lim, J.H. , Lee, K.S. , Kim, J.C. , and Lee, B.H.  (2004). Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure. Opt. Lett. 29, 331-333.
    [CrossRef] [PubMed]
  17. Steinvurzel, P. , Moore, E.D. , Magi, E.C. , Kuhlmey, B.T. , and Eggleton, B.J.  (2006). Long period grating resonances in photonic bandgap fiber. Opt. Express 14, 3007-3014.
    [CrossRef] [PubMed]
  18. http://www.crystal-fibre.com.
  19. Kim, B.H. , Park, Y. , Ahn, T.J. , Kim, D.Y. , Lee, B.H. , Chung, Y. , Paek, U.C. , and Han, W.T.  (2001). Residual stress relaxation in the core of optical fiber by CO2 laser irradiation. Opt. Lett. 26, 1657-1659.
    [CrossRef]
  20. West, J.A. , Smith, C.M. , Borrelli, N.F. , Allan, D.C. , and Koch, K.W.  (2004). Surface modes in air-core photonic band-gap fibers. Opt. Express 12, 1485-1496.
    [CrossRef] [PubMed]
  21. Kim, H.K. , Digonnet, M. , Kino, G. , Shin, J. , and Fan, S.  (2004). Simulation of the effect of the core ring on surface and air-core modes in photonic bandgap fibers. Opt. Express 12, 3436-3442.
    [CrossRef] [PubMed]
  22. Bouwmans, G. , Luan, F. , Knight, J.C. , Russell, P.S.J. , Farr, L. , Mangan, B.J. , and Sabert, H.  (2003). Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength. Opt. Express 11, 1613-1620.
    [CrossRef] [PubMed]
  23. Ju, J. , Jin, W. , and Demokan, M.S.  (2004). Two-mode operation in highly birefringent photonic crystal fiber. IEEE Photon. Technol. Lett. 16, 2472-2474.
    [CrossRef]
  24. Bachim, B.L. , and Gaylord, T.K.  (2003). Polarization-dependent loss and birefringence in long-period fiber gratings. Appl. Opt. 42, 6816-6823.
    [CrossRef] [PubMed]
  25. Lee, D. , Jung, Y. , Jeong, Y.S. , Oh, K. , Kobelke, J. , Schuster, K. , and Kirchof, J.  (2006). Highly polarization-dependent periodic coupling in mechanically induced long period grating over air-silica fibers. Opt. Lett. 31, 296-298.
    [CrossRef] [PubMed]
  26. Rao, Y.J. , Wang, Y.P. , Ran, Z.L. , and Zhu, T.  (2003). Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses. J. Lightwave Technol. 21, 1320-1327.
    [CrossRef]
  27. Patrick, H.J. , Chang, C.C. , and Vohra, S.T.  (1998). Long period fibre gratings for structural bend sensing. Electron. Lett. 34, 1773-1775.
    [CrossRef]
  28. Wang, Y.P. , and Rao, Y.J.  (2005). A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously. IEEE Sens. J. 5, 839-843.
    [CrossRef]

2006 (4)

2005 (3)

Wang, Y.P. , and Rao, Y.J.  (2005). A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously. IEEE Sens. J. 5, 839-843.
[CrossRef]

Roberts, P.J. , Couny, F. , Sabert, H. , Mangan, B.J. , Williams, D.P. , Farr, L. , Mason, M.W. , Tomlinson, A. , Birks, T.A. , Knight, J.C. , and Russell, P.S.J.  (2005). Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express 13, 236-244.
[CrossRef] [PubMed]

Hoo, Y.L. , Jin, W. , Ho, H.L. , Ju, J. , and Wang, D.N.  (2005). Gas diffusion measurement using hollow-core photonic bandgap fiber. Sens. Actuators B 105, 183-186.
[CrossRef]

2004 (7)

2003 (6)

Bachim, B.L. , and Gaylord, T.K.  (2003). Polarization-dependent loss and birefringence in long-period fiber gratings. Appl. Opt. 42, 6816-6823.
[CrossRef] [PubMed]

Rao, Y.J. , Wang, Y.P. , Ran, Z.L. , and Zhu, T.  (2003). Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses. J. Lightwave Technol. 21, 1320-1327.
[CrossRef]

Bouwmans, G. , Luan, F. , Knight, J.C. , Russell, P.S.J. , Farr, L. , Mangan, B.J. , and Sabert, H.  (2003). Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength. Opt. Express 11, 1613-1620.
[CrossRef] [PubMed]

Ouzounov, D.G. , Ahmad, F.R. , Müller, D. , Venkataraman, N. , Gallagher, M.T. , Thomas, M.G. , Silcox, J. , Koch, K.W. , and Gaeta, A.L.  (2003). Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702-1704.
[CrossRef] [PubMed]

Knight, J.C.  (2003). Photonic Crystal Fibers. Nature 424, 847-851.
[CrossRef] [PubMed]

Smith, C.M. , Venkataraman, N. , Gallagher, M.T. , Muller, D. , West, J.A. , Borrelli, N.F. , Allan, D.C. , and Koch, K.W.  (2003). Low-loss hollow-core silica/air photonic bandgap fibre. Nature 424, 657-659.
[CrossRef] [PubMed]

2002 (1)

Benabid, F. , Knight, J.C. , Antonopoulos, G. , and Russell, P.S.J.  (2002). Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399-402.
[CrossRef] [PubMed]

2001 (1)

1999 (2)

Eggleton, B.J. , Westbrook, P.S. , Windeler, R.S. , Spalter, S. , and Strasser, T.A.  (1999). Grating resonances in air-silica microstructured optical fibers. Opt. Lett. 24, 1460-1462.
[CrossRef]

Cregan, R.F. , Mangan, B.J. , Knight, J.C. , Birks, T.A. , Russell, P.S. , Roberts, P.J. , and Allan, D.C.  (1999). Single-mode photonic band gap guidance of light in air. Science 285, 1537-1539.
[CrossRef] [PubMed]

1998 (1)

Patrick, H.J. , Chang, C.C. , and Vohra, S.T.  (1998). Long period fibre gratings for structural bend sensing. Electron. Lett. 34, 1773-1775.
[CrossRef]

1996 (1)

Ahmad, D.G.

Ouzounov, D.G. , Ahmad, F.R. , Müller, D. , Venkataraman, N. , Gallagher, M.T. , Thomas, M.G. , Silcox, J. , Koch, K.W. , and Gaeta, A.L.  (2003). Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702-1704.
[CrossRef] [PubMed]

Ahn, Y.

Allan, N.F.

West, J.A. , Smith, C.M. , Borrelli, N.F. , Allan, D.C. , and Koch, K.W.  (2004). Surface modes in air-core photonic band-gap fibers. Opt. Express 12, 1485-1496.
[CrossRef] [PubMed]

Smith, C.M. , Venkataraman, N. , Gallagher, M.T. , Muller, D. , West, J.A. , Borrelli, N.F. , Allan, D.C. , and Koch, K.W.  (2003). Low-loss hollow-core silica/air photonic bandgap fibre. Nature 424, 657-659.
[CrossRef] [PubMed]

Allan, P.J.

Cregan, R.F. , Mangan, B.J. , Knight, J.C. , Birks, T.A. , Russell, P.S. , Roberts, P.J. , and Allan, D.C.  (1999). Single-mode photonic band gap guidance of light in air. Science 285, 1537-1539.
[CrossRef] [PubMed]

Antonopoulos, J.C.

Benabid, F. , Knight, J.C. , Antonopoulos, G. , and Russell, P.S.J.  (2002). Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399-402.
[CrossRef] [PubMed]

Bachim,

Benabid,

Benabid, F. , Knight, J.C. , Antonopoulos, G. , and Russell, P.S.J.  (2002). Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399-402.
[CrossRef] [PubMed]

Bhatia,

Birks, A.

Birks, J.C.

Cregan, R.F. , Mangan, B.J. , Knight, J.C. , Birks, T.A. , Russell, P.S. , Roberts, P.J. , and Allan, D.C.  (1999). Single-mode photonic band gap guidance of light in air. Science 285, 1537-1539.
[CrossRef] [PubMed]

Borrelli, C.M.

Borrelli, J.A.

Smith, C.M. , Venkataraman, N. , Gallagher, M.T. , Muller, D. , West, J.A. , Borrelli, N.F. , Allan, D.C. , and Koch, K.W.  (2003). Low-loss hollow-core silica/air photonic bandgap fibre. Nature 424, 657-659.
[CrossRef] [PubMed]

Bouwmans,

Bouwmans, J.C.

Chang, H.J.

Patrick, H.J. , Chang, C.C. , and Vohra, S.T.  (1998). Long period fibre gratings for structural bend sensing. Electron. Lett. 34, 1773-1775.
[CrossRef]

Chung, B.H.

Couny, P.J.

Cregan,

Cregan, R.F. , Mangan, B.J. , Knight, J.C. , Birks, T.A. , Russell, P.S. , Roberts, P.J. , and Allan, D.C.  (1999). Single-mode photonic band gap guidance of light in air. Science 285, 1537-1539.
[CrossRef] [PubMed]

Demokan, W.

Ju, J. , Jin, W. , and Demokan, M.S.  (2004). Two-mode operation in highly birefringent photonic crystal fiber. IEEE Photon. Technol. Lett. 16, 2472-2474.
[CrossRef]

Digonnet, H.K.

Eggleton,

Eggleton, B.T.

Fan, J.

Farr, D.P.

Farr, P.S.J.

Fini,

Fini, J.M.  (2004). Microstructure fibres for optical sensing in gases and liquids. Meas. Sci. Technol. 15, 1120-1128.
[CrossRef]

Gaeta, K.W.

Ouzounov, D.G. , Ahmad, F.R. , Müller, D. , Venkataraman, N. , Gallagher, M.T. , Thomas, M.G. , Silcox, J. , Koch, K.W. , and Gaeta, A.L.  (2003). Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702-1704.
[CrossRef] [PubMed]

Gallagher, N.

Ouzounov, D.G. , Ahmad, F.R. , Müller, D. , Venkataraman, N. , Gallagher, M.T. , Thomas, M.G. , Silcox, J. , Koch, K.W. , and Gaeta, A.L.  (2003). Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702-1704.
[CrossRef] [PubMed]

Smith, C.M. , Venkataraman, N. , Gallagher, M.T. , Muller, D. , West, J.A. , Borrelli, N.F. , Allan, D.C. , and Koch, K.W.  (2003). Low-loss hollow-core silica/air photonic bandgap fibre. Nature 424, 657-659.
[CrossRef] [PubMed]

Gaylord, B.L.

Han, U.C.

Ho, W.

Hoo, Y.L. , Jin, W. , Ho, H.L. , Ju, J. , and Wang, D.N.  (2005). Gas diffusion measurement using hollow-core photonic bandgap fiber. Sens. Actuators B 105, 183-186.
[CrossRef]

Hoo,

Hoo, Y.L. , Jin, W. , Ho, H.L. , Ju, J. , and Wang, D.N.  (2005). Gas diffusion measurement using hollow-core photonic bandgap fiber. Sens. Actuators B 105, 183-186.
[CrossRef]

Humbert,

Jeong, Y.

Jin, D.N.

Wang, Y.P. , Wang, D.N. , Jin, W. , Rao, Y.J. , and Peng, G.D.  (2006). Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber. Appl. Phys. Lett. 89, 151105.
[CrossRef]

Wang, Y.P. , Xiao, L.M. , Wang, D.N. , and Jin, W.  (2006). Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity. Opt. Lett. 31, 3414-3416.
[CrossRef] [PubMed]

Jin, J.

Ju, J. , Jin, W. , and Demokan, M.S.  (2004). Two-mode operation in highly birefringent photonic crystal fiber. IEEE Photon. Technol. Lett. 16, 2472-2474.
[CrossRef]

Jin, Y.L.

Hoo, Y.L. , Jin, W. , Ho, H.L. , Ju, J. , and Wang, D.N.  (2005). Gas diffusion measurement using hollow-core photonic bandgap fiber. Sens. Actuators B 105, 183-186.
[CrossRef]

Ju,

Ju, J. , Jin, W. , and Demokan, M.S.  (2004). Two-mode operation in highly birefringent photonic crystal fiber. IEEE Photon. Technol. Lett. 16, 2472-2474.
[CrossRef]

Ju, H.L.

Hoo, Y.L. , Jin, W. , Ho, H.L. , Ju, J. , and Wang, D.N.  (2005). Gas diffusion measurement using hollow-core photonic bandgap fiber. Sens. Actuators B 105, 183-186.
[CrossRef]

Jung, D.

Kim,

Kim, K.S.

Kim, T.J.

Kino, M.

Kirchof, K.

Knight,

Knight, J.C.  (2003). Photonic Crystal Fibers. Nature 424, 847-851.
[CrossRef] [PubMed]

Knight, B.J.

Cregan, R.F. , Mangan, B.J. , Knight, J.C. , Birks, T.A. , Russell, P.S. , Roberts, P.J. , and Allan, D.C.  (1999). Single-mode photonic band gap guidance of light in air. Science 285, 1537-1539.
[CrossRef] [PubMed]

Knight, F.

Bouwmans, G. , Luan, F. , Knight, J.C. , Russell, P.S.J. , Farr, L. , Mangan, B.J. , and Sabert, H.  (2003). Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength. Opt. Express 11, 1613-1620.
[CrossRef] [PubMed]

Benabid, F. , Knight, J.C. , Antonopoulos, G. , and Russell, P.S.J.  (2002). Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399-402.
[CrossRef] [PubMed]

Knight, G.

Knight, T.A.

Kobelke, K.

Koch, D.C.

West, J.A. , Smith, C.M. , Borrelli, N.F. , Allan, D.C. , and Koch, K.W.  (2004). Surface modes in air-core photonic band-gap fibers. Opt. Express 12, 1485-1496.
[CrossRef] [PubMed]

Smith, C.M. , Venkataraman, N. , Gallagher, M.T. , Muller, D. , West, J.A. , Borrelli, N.F. , Allan, D.C. , and Koch, K.W.  (2003). Low-loss hollow-core silica/air photonic bandgap fibre. Nature 424, 657-659.
[CrossRef] [PubMed]

Koch, J.

Ouzounov, D.G. , Ahmad, F.R. , Müller, D. , Venkataraman, N. , Gallagher, M.T. , Thomas, M.G. , Silcox, J. , Koch, K.W. , and Gaeta, A.L.  (2003). Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702-1704.
[CrossRef] [PubMed]

Kuhlmey, E.C.

Lee,

Lee, D.Y.

Lee, J.C.

Lee, J.H.

Lim,

Luan, G.

Magi, E.D.

Mangan, H.

Mangan, L.

Mangan, P.J.

Mangan, R.F.

Cregan, R.F. , Mangan, B.J. , Knight, J.C. , Birks, T.A. , Russell, P.S. , Roberts, P.J. , and Allan, D.C.  (1999). Single-mode photonic band gap guidance of light in air. Science 285, 1537-1539.
[CrossRef] [PubMed]

Mason, L.

Miyake, K.

Moore, P.

Morishita,

Muller, M.T.

Smith, C.M. , Venkataraman, N. , Gallagher, M.T. , Muller, D. , West, J.A. , Borrelli, N.F. , Allan, D.C. , and Koch, K.W.  (2003). Low-loss hollow-core silica/air photonic bandgap fibre. Nature 424, 657-659.
[CrossRef] [PubMed]

Müller, F.R.

Ouzounov, D.G. , Ahmad, F.R. , Müller, D. , Venkataraman, N. , Gallagher, M.T. , Thomas, M.G. , Silcox, J. , Koch, K.W. , and Gaeta, A.L.  (2003). Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702-1704.
[CrossRef] [PubMed]

Oh, Y.S.

Ouzounov,

Ouzounov, D.G. , Ahmad, F.R. , Müller, D. , Venkataraman, N. , Gallagher, M.T. , Thomas, M.G. , Silcox, J. , Koch, K.W. , and Gaeta, A.L.  (2003). Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702-1704.
[CrossRef] [PubMed]

Paek, Y.

Park, B.H.

Patrick,

Patrick, H.J. , Chang, C.C. , and Vohra, S.T.  (1998). Long period fibre gratings for structural bend sensing. Electron. Lett. 34, 1773-1775.
[CrossRef]

Peng, Y.J.

Wang, Y.P. , Wang, D.N. , Jin, W. , Rao, Y.J. , and Peng, G.D.  (2006). Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber. Appl. Phys. Lett. 89, 151105.
[CrossRef]

Ran, Y.P.

Rao,

Rao, W.

Wang, Y.P. , Wang, D.N. , Jin, W. , Rao, Y.J. , and Peng, G.D.  (2006). Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber. Appl. Phys. Lett. 89, 151105.
[CrossRef]

Rao, Y.P.

Wang, Y.P. , and Rao, Y.J.  (2005). A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously. IEEE Sens. J. 5, 839-843.
[CrossRef]

Roberts,

Roberts, D.P.

Roberts, P.S.

Cregan, R.F. , Mangan, B.J. , Knight, J.C. , Birks, T.A. , Russell, P.S. , Roberts, P.J. , and Allan, D.C.  (1999). Single-mode photonic band gap guidance of light in air. Science 285, 1537-1539.
[CrossRef] [PubMed]

Russell, G.

Humbert, G. , Knight, J.C. , Bouwmans, G. , Russell, P.S. , Williams, D.P. , Roberts, P.J. , and Mangan, B.J.  (2004). Hollow core photonic crystal fibers for beam delivery. Opt. Express 12, 1477-1484.
[CrossRef] [PubMed]

Benabid, F. , Knight, J.C. , Antonopoulos, G. , and Russell, P.S.J.  (2002). Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399-402.
[CrossRef] [PubMed]

Russell, J.C.

Russell, T.A.

Cregan, R.F. , Mangan, B.J. , Knight, J.C. , Birks, T.A. , Russell, P.S. , Roberts, P.J. , and Allan, D.C.  (1999). Single-mode photonic band gap guidance of light in air. Science 285, 1537-1539.
[CrossRef] [PubMed]

Sabert, B.J.

Sabert, F.

Schuster, J.

Shin, G.

Silcox, M.G.

Ouzounov, D.G. , Ahmad, F.R. , Müller, D. , Venkataraman, N. , Gallagher, M.T. , Thomas, M.G. , Silcox, J. , Koch, K.W. , and Gaeta, A.L.  (2003). Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702-1704.
[CrossRef] [PubMed]

Smith,

Smith, C.M. , Venkataraman, N. , Gallagher, M.T. , Muller, D. , West, J.A. , Borrelli, N.F. , Allan, D.C. , and Koch, K.W.  (2003). Low-loss hollow-core silica/air photonic bandgap fibre. Nature 424, 657-659.
[CrossRef] [PubMed]

Smith, J.A.

Spalter, R.S.

Steinvurzel,

Strasser, S.

Thomas, M.T.

Ouzounov, D.G. , Ahmad, F.R. , Müller, D. , Venkataraman, N. , Gallagher, M.T. , Thomas, M.G. , Silcox, J. , Koch, K.W. , and Gaeta, A.L.  (2003). Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702-1704.
[CrossRef] [PubMed]

Tomlinson, M.W.

Vengsarkar, V.

Venkataraman, C.M.

Smith, C.M. , Venkataraman, N. , Gallagher, M.T. , Muller, D. , West, J.A. , Borrelli, N.F. , Allan, D.C. , and Koch, K.W.  (2003). Low-loss hollow-core silica/air photonic bandgap fibre. Nature 424, 657-659.
[CrossRef] [PubMed]

Venkataraman, D.

Ouzounov, D.G. , Ahmad, F.R. , Müller, D. , Venkataraman, N. , Gallagher, M.T. , Thomas, M.G. , Silcox, J. , Koch, K.W. , and Gaeta, A.L.  (2003). Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702-1704.
[CrossRef] [PubMed]

Vohra, C.C.

Patrick, H.J. , Chang, C.C. , and Vohra, S.T.  (1998). Long period fibre gratings for structural bend sensing. Electron. Lett. 34, 1773-1775.
[CrossRef]

Wang,

Wang, Y.P. , Wang, D.N. , Jin, W. , Rao, Y.J. , and Peng, G.D.  (2006). Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber. Appl. Phys. Lett. 89, 151105.
[CrossRef]

Wang, Y.P. , Xiao, L.M. , Wang, D.N. , and Jin, W.  (2006). Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity. Opt. Lett. 31, 3414-3416.
[CrossRef] [PubMed]

Wang, Y.P. , and Rao, Y.J.  (2005). A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously. IEEE Sens. J. 5, 839-843.
[CrossRef]

Wang, J.

Hoo, Y.L. , Jin, W. , Ho, H.L. , Ju, J. , and Wang, D.N.  (2005). Gas diffusion measurement using hollow-core photonic bandgap fiber. Sens. Actuators B 105, 183-186.
[CrossRef]

Wang, L.M.

Wang, Y.J.

Wang, Y.P.

Wang, Y.P. , Wang, D.N. , Jin, W. , Rao, Y.J. , and Peng, G.D.  (2006). Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber. Appl. Phys. Lett. 89, 151105.
[CrossRef]

West,

West, D.

Smith, C.M. , Venkataraman, N. , Gallagher, M.T. , Muller, D. , West, J.A. , Borrelli, N.F. , Allan, D.C. , and Koch, K.W.  (2003). Low-loss hollow-core silica/air photonic bandgap fibre. Nature 424, 657-659.
[CrossRef] [PubMed]

Westbrook, B.J.

Williams, B.J.

Williams, P.S.

Windeler, P.S.

Xiao, Y.P.

Zhu, Z.L.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Wang, Y.P. , Wang, D.N. , Jin, W. , Rao, Y.J. , and Peng, G.D.  (2006). Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber. Appl. Phys. Lett. 89, 151105.
[CrossRef]

Electron. Lett. (1)

Patrick, H.J. , Chang, C.C. , and Vohra, S.T.  (1998). Long period fibre gratings for structural bend sensing. Electron. Lett. 34, 1773-1775.
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Ju, J. , Jin, W. , and Demokan, M.S.  (2004). Two-mode operation in highly birefringent photonic crystal fiber. IEEE Photon. Technol. Lett. 16, 2472-2474.
[CrossRef]

IEEE Sens. J. (1)

Wang, Y.P. , and Rao, Y.J.  (2005). A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously. IEEE Sens. J. 5, 839-843.
[CrossRef]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (1)

Fini, J.M.  (2004). Microstructure fibres for optical sensing in gases and liquids. Meas. Sci. Technol. 15, 1120-1128.
[CrossRef]

Nature (2)

Knight, J.C.  (2003). Photonic Crystal Fibers. Nature 424, 847-851.
[CrossRef] [PubMed]

Smith, C.M. , Venkataraman, N. , Gallagher, M.T. , Muller, D. , West, J.A. , Borrelli, N.F. , Allan, D.C. , and Koch, K.W.  (2003). Low-loss hollow-core silica/air photonic bandgap fibre. Nature 424, 657-659.
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (6)

Science (3)

Benabid, F. , Knight, J.C. , Antonopoulos, G. , and Russell, P.S.J.  (2002). Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399-402.
[CrossRef] [PubMed]

Cregan, R.F. , Mangan, B.J. , Knight, J.C. , Birks, T.A. , Russell, P.S. , Roberts, P.J. , and Allan, D.C.  (1999). Single-mode photonic band gap guidance of light in air. Science 285, 1537-1539.
[CrossRef] [PubMed]

Ouzounov, D.G. , Ahmad, F.R. , Müller, D. , Venkataraman, N. , Gallagher, M.T. , Thomas, M.G. , Silcox, J. , Koch, K.W. , and Gaeta, A.L.  (2003). Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702-1704.
[CrossRef] [PubMed]

Sens. Actuators B (1)

Hoo, Y.L. , Jin, W. , Ho, H.L. , Ju, J. , and Wang, D.N.  (2005). Gas diffusion measurement using hollow-core photonic bandgap fiber. Sens. Actuators B 105, 183-186.
[CrossRef]

Other (2)

Mangan, B.J. , Farr, L. , Langford, A. , Roberts, P.J. , Williams, D.P. , Couny, F. , Lawman, M. , Mason, M. , Coupland, S. , Flea, R. , and Sabert, H.  "Low-loss (1.7dB/km) hollow-core photonic bandgap fiber," in proceeding of OFC 2004, paper PDF24, Los Angeles, USA (2004).

http://www.crystal-fibre.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scanning electron micrographs of PBF cross-sections (a) before and (b) after CO2 laser irradiation. (c) Periodic notches on PBF after 50 scanning cycles. (d) Evolution of the transmitted spectrum of LPFG with 40 periods and a grating pitch of 430µm with increasing number of scanning cycles (K=1st, 2nd, …50th). (e) Variation of LPFG resonant wavelengths with grating pitch (upper panel) and their transmission spectrums (lower panel). These LPFGs have 40 periods and were written at a position 5 to15cm away form the output end of 2m PBF. The PBF is pigtailed at both ends with SMF28 fibers. All transmission spectra were measured with an OSA with a resolution of 1nm.

Fig. 2.
Fig. 2.

(a). Near field image in a PBF without LPFG. (b) Near field images of an LPFG at the resonant wavelength of 1523.1nm when the LPFG was cut at 6th notch. (c) Near field images of the same LPFG observed at the 19th notch at 1523.1nm. (d) Near field images observed at the 19th notch when the light wavelength was tuned to 1540.0nm. The transmitted spectrum of the LPFG is illustrated in Fig. 1(d). The dot-dashed circle and the dashed curve in (c) outline the cross-sections, as illustrated in Figs. 1(a) and 1(b), of air-hole region before and after the CO2 laser irradiation, respectively.

Fig. 3.
Fig. 3.

(a). Transmitted spectrums of 1.1m PBF before (black and blue) and after (pink and red) an LPFG with a grating pitch of 395µm and 20 grating periods was created. The spectrums were observed with an OSA with a resolution of 0.01nm. The left (for black and pink traces) and right (for blue and red traces) axes are in the logarithmic and linear scales, respectively. The PBF is pigtailed with SMF28 fibers in both ends and the LPFG was written near the output end of the PBF. The square-insert (the green trace) shows the LPFG’s transmitted spectrum measured with a 1nm resolution, and the resonant wavelength is 1595.8nm. (b), (c), and (d) Far field images at the output of the LPFG at the wavelengths around the points labeled as ‘b’, ‘c’ and ‘d’ in the oval-insert in (a). The pigtail at the output end was cut to observe these images.

Fig. 4.
Fig. 4.

(a). PDL of PBF with and without an LPFG. The LPFG sample is the same as in Fig. 3. Measured resonant wavelength and peak transmitted attenuation of the LPFG as functions of temperature (b), curvature (c), and tensile strain (d).

Metrics