Abstract

We propose that the bending profile of a mechanical deformable mirror can be designed by shaping its form, realizing a simple, compact, and broadband group delay dispersion compensator in a 4-f pulse shaper arrangement. By using the proposed compensator, spectral phase distortion of a microscope objective lens is successfully pre-compensated for to generate a sub-8 fs pulse at the focus of the lens.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Schibli, T.R. , Kuzucu, O. , Kim, J.-W. , Ippen, E.P. , Fujimoto, J.G. , Kaertner, F.X. , Scheuer, V. , and Angelow, G.  (2003). Toward single-cycle laser systems. IEEE J. Sel. Top. Quantum Electron. 9, 990-1001.
    [CrossRef]
  2. Dudovich, N. , Oron, D. , and Silberberg, Y.  (2002). Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418, 512.
    [CrossRef] [PubMed]
  3. Ogilvie, J.P. , Kubarych, K. , Alexandrou, A. , and Joffre, M.  (2005). Fourier transform measurement of two-photon excitation spectra: applications to microscopy and optimal control. Opt. Lett. 30, 911.
    [CrossRef] [PubMed]
  4. Ogilvie, J.P. , Beaurepaire, E. , Alexandrou, A. , and Joffre, M.  (2006). Fourier-transform coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 31, 480.
    [CrossRef] [PubMed]
  5. Isobe, K. , Ozeki, Y. , Kawasumi, T. , and Kataoka, S.  (2006). S. 'i. Kajiyama, K. Fukui, and K. Itoh, "Highly sensitive spectral interferometric four-wave mixing microscopy near the shot noise limit and its combination with two-photon excited fluorescence microscopy. Opt. Express 14, 11204-11214http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-23-11204.
    [CrossRef] [PubMed]
  6. Treacy, E.B.  (1969). Optical pulse compression with diffraction gratings. IEEE J. Quantum Electron. QE-5, 454.
    [CrossRef]
  7. Fork, R.L. , Martinez, O.E. , and Gordon, J.P.  (1984). Negative dispersion using pairs of prisms. Opt. Lett. 9, 150.
    [CrossRef] [PubMed]
  8. Szipöcs, R. , Ferencz, K. , Spielmann, C. , and Krausz, F.  (1994). Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt. Lett. 19, 201.
    [CrossRef] [PubMed]
  9. Tournois, P.  (1997). Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems. Opt. Commun. 140, 245.
    [CrossRef]
  10. Weiner, A.M. , Leaird, D.E. , Patel, J.S. , and Wullert, J.R.  (1990). Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator. Opt. Lett. 15, 326.
    [CrossRef] [PubMed]
  11. Zeek, E. , Maginnis, K. , Backus, S. , Russek, U. , Murnane, M. , Mourou, G. , Kapteyn, H. , and Vdovin, G.  (1999). Pulse compression by use of deformable mirrors. Opt. Lett. 24, 493-495.
    [CrossRef]
  12. Radzewicz, C. , Wasylczyk, P. , Wasilewski, W. , and Krasi?ski, J.S.  (2004). Piezo-driven deformable mirror for femtosecond pulse shaping. Opt. Lett. 29, 177.
    [CrossRef] [PubMed]
  13. J. P. Heritage, E. W. Chase, R. N. Thurston, and M. Stern, "A simple femtosecond optical third-order disperser," CLEO’91, CTuB3 (1991).
  14. Jasapara, J. , and Rudolph, W.  (1999). Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives. Opt. Lett. 24, 777.
    [CrossRef]
  15. Chen, J. , Kawano, H. , Nabekawa, Y. , Mizuno, H. , Miyawaki, A. , Tanabe, T. , Kannari, F. , and Midorikawa, K.  (2004). Selective excitation between two-photon and three-photon fluorescence with engineered cost functions. Opt. Express 12, 3408-3414http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3408.
    [CrossRef] [PubMed]
  16. Isobe, K. , Suda, A. , Tanaka, M. , Kannari, F. , Kawano, H. , Mizuno, H. , Miyawaki, A. , and Midorikawa, K.  "Multi-nonlinear spectroscopy using fringe resolved autocorrelation technique," presented at the 68th autumn meeting of the Japan Soc. Appl. Phys., Hokkaido, Japan, paper 7p-ZA-3, September 7th, 2007. (in Japanese).
  17. Goh, C.S. , Set, S.Y. , Taira, K. , Khijwania, S.K. , and Kikuchi, K.  (2002). Nonlinearly strain-chirped fiber Bragg grating with an adjustable dispersion slope. IEEE Photon. Technol. Lett. 14, 663.
    [CrossRef]
  18. Wefers, M.M. , and Nelson, K.A.  (1996). Space-time profiles of shaped ultrafast optical waveforms. IEEE J. Quantum Electron. 32, 161.
    [CrossRef]
  19. Claig, R.R. , Jr. Mechanics of Materials, 2nd ed., (New York, Wiley, 2000).
  20. Lepetit, L. , Chériaux, G. , and Joffre, M.  (1995). Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am. B 12, 2467.
    [CrossRef]
  21. Kim, J. , Birge, J.R. , Sharma, V. , Fujimoto, J.G. , Kärtner, F.X. , Scheuer, V. , and Angelow, G.  (2005). Ultrabroadband beam splitter with matched group-delay dispersion. Opt. Lett. 30, 1569-1571.
    [CrossRef] [PubMed]
  22. Yamane, K. , Kito, T. , Morita, R. , and Yamashita, M.  (2004). Experimental and theoretical demonstration of validity and limitations in fringe-resolved autocorrelation measurements for pulses of few optical cycles. Opt. Express 12, 2762-2773http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-12-2762.
    [CrossRef] [PubMed]

2006

2005

2004

2003

Schibli, T.R. , Kuzucu, O. , Kim, J.-W. , Ippen, E.P. , Fujimoto, J.G. , Kaertner, F.X. , Scheuer, V. , and Angelow, G.  (2003). Toward single-cycle laser systems. IEEE J. Sel. Top. Quantum Electron. 9, 990-1001.
[CrossRef]

2002

Dudovich, N. , Oron, D. , and Silberberg, Y.  (2002). Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418, 512.
[CrossRef] [PubMed]

Goh, C.S. , Set, S.Y. , Taira, K. , Khijwania, S.K. , and Kikuchi, K.  (2002). Nonlinearly strain-chirped fiber Bragg grating with an adjustable dispersion slope. IEEE Photon. Technol. Lett. 14, 663.
[CrossRef]

1999

1997

Tournois, P.  (1997). Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems. Opt. Commun. 140, 245.
[CrossRef]

1996

Wefers, M.M. , and Nelson, K.A.  (1996). Space-time profiles of shaped ultrafast optical waveforms. IEEE J. Quantum Electron. 32, 161.
[CrossRef]

1995

1994

1990

1984

1969

Treacy, E.B.  (1969). Optical pulse compression with diffraction gratings. IEEE J. Quantum Electron. QE-5, 454.
[CrossRef]

Alexandrou, E.

Alexandrou, K.

Angelow, V.

Kim, J. , Birge, J.R. , Sharma, V. , Fujimoto, J.G. , Kärtner, F.X. , Scheuer, V. , and Angelow, G.  (2005). Ultrabroadband beam splitter with matched group-delay dispersion. Opt. Lett. 30, 1569-1571.
[CrossRef] [PubMed]

Schibli, T.R. , Kuzucu, O. , Kim, J.-W. , Ippen, E.P. , Fujimoto, J.G. , Kaertner, F.X. , Scheuer, V. , and Angelow, G.  (2003). Toward single-cycle laser systems. IEEE J. Sel. Top. Quantum Electron. 9, 990-1001.
[CrossRef]

Backus, K.

Beaurepaire, J.P.

Birge, J.

Chen,

Chériaux, L.

Dudovich,

Dudovich, N. , Oron, D. , and Silberberg, Y.  (2002). Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418, 512.
[CrossRef] [PubMed]

Ferencz, R.

Fork,

Fujimoto, E.P.

Schibli, T.R. , Kuzucu, O. , Kim, J.-W. , Ippen, E.P. , Fujimoto, J.G. , Kaertner, F.X. , Scheuer, V. , and Angelow, G.  (2003). Toward single-cycle laser systems. IEEE J. Sel. Top. Quantum Electron. 9, 990-1001.
[CrossRef]

Fujimoto, V.

Goh,

Goh, C.S. , Set, S.Y. , Taira, K. , Khijwania, S.K. , and Kikuchi, K.  (2002). Nonlinearly strain-chirped fiber Bragg grating with an adjustable dispersion slope. IEEE Photon. Technol. Lett. 14, 663.
[CrossRef]

Gordon, O.E.

Ippen, J.-W.

Schibli, T.R. , Kuzucu, O. , Kim, J.-W. , Ippen, E.P. , Fujimoto, J.G. , Kaertner, F.X. , Scheuer, V. , and Angelow, G.  (2003). Toward single-cycle laser systems. IEEE J. Sel. Top. Quantum Electron. 9, 990-1001.
[CrossRef]

Isobe,

Jasapara,

Joffre, A.

Joffre, G.

Kaertner, J.G.

Schibli, T.R. , Kuzucu, O. , Kim, J.-W. , Ippen, E.P. , Fujimoto, J.G. , Kaertner, F.X. , Scheuer, V. , and Angelow, G.  (2003). Toward single-cycle laser systems. IEEE J. Sel. Top. Quantum Electron. 9, 990-1001.
[CrossRef]

Kannari, T.

Kapteyn, G.

Kärtner, J.G.

Kataoka, T.

Kawano, J.

Kawasumi, Y.

Khijwania, K.

Goh, C.S. , Set, S.Y. , Taira, K. , Khijwania, S.K. , and Kikuchi, K.  (2002). Nonlinearly strain-chirped fiber Bragg grating with an adjustable dispersion slope. IEEE Photon. Technol. Lett. 14, 663.
[CrossRef]

Kikuchi, S.K.

Goh, C.S. , Set, S.Y. , Taira, K. , Khijwania, S.K. , and Kikuchi, K.  (2002). Nonlinearly strain-chirped fiber Bragg grating with an adjustable dispersion slope. IEEE Photon. Technol. Lett. 14, 663.
[CrossRef]

Kim,

Kim, O.

Schibli, T.R. , Kuzucu, O. , Kim, J.-W. , Ippen, E.P. , Fujimoto, J.G. , Kaertner, F.X. , Scheuer, V. , and Angelow, G.  (2003). Toward single-cycle laser systems. IEEE J. Sel. Top. Quantum Electron. 9, 990-1001.
[CrossRef]

Kito, K.

Krasinski, W.

Krausz, C.

Kubarych, J.P.

Kuzucu, T.R.

Schibli, T.R. , Kuzucu, O. , Kim, J.-W. , Ippen, E.P. , Fujimoto, J.G. , Kaertner, F.X. , Scheuer, V. , and Angelow, G.  (2003). Toward single-cycle laser systems. IEEE J. Sel. Top. Quantum Electron. 9, 990-1001.
[CrossRef]

Leaird, A.M.

Lepetit,

Maginnis, E.

Martinez, R.L.

Midorikawa, F.

Miyawaki, H.

Mizuno, Y.

Morita, T.

Mourou, M.

Murnane, U.

Nabekawa, H.

Nelson, M.M.

Wefers, M.M. , and Nelson, K.A.  (1996). Space-time profiles of shaped ultrafast optical waveforms. IEEE J. Quantum Electron. 32, 161.
[CrossRef]

Ogilvie,

Oron, N.

Dudovich, N. , Oron, D. , and Silberberg, Y.  (2002). Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418, 512.
[CrossRef] [PubMed]

Ozeki, K.

Patel, D.E.

Radzewicz,

Rudolph, J.

Russek, S.

Scheuer, F.X.

Kim, J. , Birge, J.R. , Sharma, V. , Fujimoto, J.G. , Kärtner, F.X. , Scheuer, V. , and Angelow, G.  (2005). Ultrabroadband beam splitter with matched group-delay dispersion. Opt. Lett. 30, 1569-1571.
[CrossRef] [PubMed]

Schibli, T.R. , Kuzucu, O. , Kim, J.-W. , Ippen, E.P. , Fujimoto, J.G. , Kaertner, F.X. , Scheuer, V. , and Angelow, G.  (2003). Toward single-cycle laser systems. IEEE J. Sel. Top. Quantum Electron. 9, 990-1001.
[CrossRef]

Schibli,

Schibli, T.R. , Kuzucu, O. , Kim, J.-W. , Ippen, E.P. , Fujimoto, J.G. , Kaertner, F.X. , Scheuer, V. , and Angelow, G.  (2003). Toward single-cycle laser systems. IEEE J. Sel. Top. Quantum Electron. 9, 990-1001.
[CrossRef]

Set, C.S.

Goh, C.S. , Set, S.Y. , Taira, K. , Khijwania, S.K. , and Kikuchi, K.  (2002). Nonlinearly strain-chirped fiber Bragg grating with an adjustable dispersion slope. IEEE Photon. Technol. Lett. 14, 663.
[CrossRef]

Sharma, J.R.

Silberberg, D.

Dudovich, N. , Oron, D. , and Silberberg, Y.  (2002). Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418, 512.
[CrossRef] [PubMed]

Spielmann, K.

Szipöcs,

Taira, S.Y.

Goh, C.S. , Set, S.Y. , Taira, K. , Khijwania, S.K. , and Kikuchi, K.  (2002). Nonlinearly strain-chirped fiber Bragg grating with an adjustable dispersion slope. IEEE Photon. Technol. Lett. 14, 663.
[CrossRef]

Tanabe, A.

Tournois,

Tournois, P.  (1997). Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems. Opt. Commun. 140, 245.
[CrossRef]

Treacy,

Treacy, E.B.  (1969). Optical pulse compression with diffraction gratings. IEEE J. Quantum Electron. QE-5, 454.
[CrossRef]

Vdovin, H.

Wasilewski, P.

Wasylczyk, C.

Wefers,

Wefers, M.M. , and Nelson, K.A.  (1996). Space-time profiles of shaped ultrafast optical waveforms. IEEE J. Quantum Electron. 32, 161.
[CrossRef]

Weiner,

Wullert, J.S.

Yamane,

Yamashita, R.

Zeek,

IEEE J. Quantum Electron.

Treacy, E.B.  (1969). Optical pulse compression with diffraction gratings. IEEE J. Quantum Electron. QE-5, 454.
[CrossRef]

Wefers, M.M. , and Nelson, K.A.  (1996). Space-time profiles of shaped ultrafast optical waveforms. IEEE J. Quantum Electron. 32, 161.
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Schibli, T.R. , Kuzucu, O. , Kim, J.-W. , Ippen, E.P. , Fujimoto, J.G. , Kaertner, F.X. , Scheuer, V. , and Angelow, G.  (2003). Toward single-cycle laser systems. IEEE J. Sel. Top. Quantum Electron. 9, 990-1001.
[CrossRef]

IEEE Photon. Technol. Lett.

Goh, C.S. , Set, S.Y. , Taira, K. , Khijwania, S.K. , and Kikuchi, K.  (2002). Nonlinearly strain-chirped fiber Bragg grating with an adjustable dispersion slope. IEEE Photon. Technol. Lett. 14, 663.
[CrossRef]

J. Opt. Soc. Am. B

Nature

Dudovich, N. , Oron, D. , and Silberberg, Y.  (2002). Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418, 512.
[CrossRef] [PubMed]

Opt. Commun.

Tournois, P.  (1997). Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems. Opt. Commun. 140, 245.
[CrossRef]

Opt. Express

Opt. Lett.

Kim, J. , Birge, J.R. , Sharma, V. , Fujimoto, J.G. , Kärtner, F.X. , Scheuer, V. , and Angelow, G.  (2005). Ultrabroadband beam splitter with matched group-delay dispersion. Opt. Lett. 30, 1569-1571.
[CrossRef] [PubMed]

Jasapara, J. , and Rudolph, W.  (1999). Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives. Opt. Lett. 24, 777.
[CrossRef]

Fork, R.L. , Martinez, O.E. , and Gordon, J.P.  (1984). Negative dispersion using pairs of prisms. Opt. Lett. 9, 150.
[CrossRef] [PubMed]

Szipöcs, R. , Ferencz, K. , Spielmann, C. , and Krausz, F.  (1994). Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt. Lett. 19, 201.
[CrossRef] [PubMed]

Weiner, A.M. , Leaird, D.E. , Patel, J.S. , and Wullert, J.R.  (1990). Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator. Opt. Lett. 15, 326.
[CrossRef] [PubMed]

Zeek, E. , Maginnis, K. , Backus, S. , Russek, U. , Murnane, M. , Mourou, G. , Kapteyn, H. , and Vdovin, G.  (1999). Pulse compression by use of deformable mirrors. Opt. Lett. 24, 493-495.
[CrossRef]

Radzewicz, C. , Wasylczyk, P. , Wasilewski, W. , and Krasi?ski, J.S.  (2004). Piezo-driven deformable mirror for femtosecond pulse shaping. Opt. Lett. 29, 177.
[CrossRef] [PubMed]

Ogilvie, J.P. , Kubarych, K. , Alexandrou, A. , and Joffre, M.  (2005). Fourier transform measurement of two-photon excitation spectra: applications to microscopy and optimal control. Opt. Lett. 30, 911.
[CrossRef] [PubMed]

Ogilvie, J.P. , Beaurepaire, E. , Alexandrou, A. , and Joffre, M.  (2006). Fourier-transform coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 31, 480.
[CrossRef] [PubMed]

Other

J. P. Heritage, E. W. Chase, R. N. Thurston, and M. Stern, "A simple femtosecond optical third-order disperser," CLEO’91, CTuB3 (1991).

Isobe, K. , Suda, A. , Tanaka, M. , Kannari, F. , Kawano, H. , Mizuno, H. , Miyawaki, A. , and Midorikawa, K.  "Multi-nonlinear spectroscopy using fringe resolved autocorrelation technique," presented at the 68th autumn meeting of the Japan Soc. Appl. Phys., Hokkaido, Japan, paper 7p-ZA-3, September 7th, 2007. (in Japanese).

Claig, R.R. , Jr. Mechanics of Materials, 2nd ed., (New York, Wiley, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the GDD compensator with a specially shaped DM. G: Diffraction grating (200/mm). CM: concave mirror (f=150 mm). FM: folding mirror. DM: deformable mirror. (b) Shape of the designed DM. Broken lines indicate the horizontal positions at which 650-nm, 800-nm, 950-nm wavelength lights are reflected.

Fig. 2.
Fig. 2.

Results of the design of the DM. (a) Spectral phase introduced by the GDD compensator (solid line) and induced beam position shift (broken line) as functions of wavelength. (b) Deformation (solid line) and width (broken line) of the DM as functions of the position of the DM. The origin of DM position x corresponds to the point where 800-nm wavelength light is reflected.

Fig. 3.
Fig. 3.

Measured dependence of 2nd and 3rd order dispersions of the GDD compensator on the amount of deformation.

Fig. 4.
Fig. 4.

Experimental setup of GDD compensation for a microscope objective lens. BS: beam splitter. OB: objective lens. C: second harmonic generation crystal (type-I BBO). CM: concave mirror. PMT: photomultiplier tube. SMF: single mode fiber. OSA: optical spectrum analyzer.

Fig. 5.
Fig. 5.

Fringe-resolved autocorrelation trace (black solid line), and filtered autocorrelation trace (gray line) of the compensated pulse at the focus of the lens. Broken lines: fitting curves with an assumption of sech2 waveform. Inset: spectrum measured at the input of the lens.

Metrics