Abstract

In this paper, effect of an introduced defect on electrical and optical properties of quantum box and spherical quantum dot is studied. 3Dself-consistent solution of the Schrödinger-Poisson equations for evaluation of the proposed complex quantum box and analytical solution for spherical quantum dot are used. It is shown that with increasing the defect size and height a considerable enhancement in matrix element, optical nonlinearities (second order, quadratic electro-optic effect and the resonant third order nonlinear susceptibilities), optical linear absorption coefficient (4.5–10 nm, 10−4~10−2 m.V−1, 10−12~10−9 m2/V2, 10−11~10−9 m2/V2 and 4.7×102~3.8×104 cm−1 respectively) and electroabsorption properties associated with intersublevel transition of centered defect quantum dot are examined. Also, it is shown that enhancement of optical nonlinearity is approximately independent of defect position that is so excellent from practical implementation point of view. A THZ-IR photodetector based on resonant tunneling spherical centered defect quantum dot (RT-SCDQD) operating at room temperature is also investigated. Inserting the centered defect in quantum dot increases the dipole transition matrix element and so increases the absorption coefficient considerably (1.05×106~7.33×106 m−1 at 83 µm). Therefore the quantum efficiency in SCDQD structure enhances which leads to increasing the responsivity of the proposed system. The double barrier reduces the dark current. These improvements concludes to ultra high detectivity 5×1016 and 2.25×109 cmHz1/2/W at 83 and 300°K at 83 µm respectively.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ghosh, A. S. Lenihan, M. V. G. Dutt, O. Qasaimeh, D. G. Steel, and P. Bhattacharya, “Nonlinear Optical and Electro-optic Properties of InAs/GaAs Self-organized Quantum Dots,” J. Vac. Sci. Technol. B. 19, 1455–1458 (2001).
    [CrossRef]
  2. E. Rosencher, P. Bois, J. Nagle, and S. Delaitre, “Second Harmonic Generation by Intersubband Transitions in Compositionally Asymmetrical MQWs,” Electron. Lett. 25, 1063–1065 (1989).
    [CrossRef]
  3. S. Banerjee and K. A. Shore, “MIR and NIR Nonlinear Optical Processing using Intersubband χ(3) in triple Quantum Well Structures,” Inst. Phys. Publish. UK.655–660l (2003).
  4. T. Brunhes, P. Boucaud, S. Sauvage, F. Glotin, R. Prazeres, J. -M. Ortega, A. Lemaitre, and J.-M. Gerard, “Midinfrared Second-harmonic Generation in P-type InAs/GaAs Self-assembled Quantum Dots,” Appl. Phys. Lett. 75, 835–837 (1999).
    [CrossRef]
  5. J. Liu, Y. Bai, and G. Xiong, “Studies of the Second-order Nonlinear Optical Susceptibilities of GaN/AlGaN Quantum Well,” Physica E 23, 70–74 (2004).
    [CrossRef]
  6. S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J. M. Ortega, and J. M. Gerard, “Second-harmonic Generation Resonant with S-P Transition in InAs/GaAs Self-assembled Quantum Dots,” Phys. Rev. B 63, 113312_1–113312_4 (2001).
    [CrossRef]
  7. K. W. Berryman, S. A. Lyon, and M. Segev, “Mid-infrared photoconductivity in InAs quantum dots,” Appl. Phys. Lett. 70, 1861–1863 (1997).
    [CrossRef]
  8. J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, “Intersubband absorption in boron-doped multiple Ge quantum dots,” Appl. Phys. Lett. 74, 185–187 (1999).
    [CrossRef]
  9. X. Zhang, G. Xiong, and X. Feng, “Well Width-dependent Third-order Optical Nonlinearities of a ZnS/CdSe Cylindrical Quantum Dot Quantum Well,” Physica E 33, 120–124 (2006).
    [CrossRef]
  10. V. Ryzhii, I. Khmyrova, M. Ryzhii, and V. Mitin, “Comparison of dark current, responsivity and detectivity in different intersubband infrared photodetectors,” Semicond. Sci. Technol. 19, 8–16 (2004).
    [CrossRef]
  11. A. Rostami and H. Rasooli Saghai, “A novel proposal for ultra-high optical nonlinearity in GaN/AlGaN spherical centered defect quantum dot (SCDQD),” Microelectron. J. 38, 342–351 (2007).
    [CrossRef]
  12. A. Rostami, H. Rasooli Saghai, and H. Baghban, “A Proposal for Enhancement of Optical Nonlinearity in GaN/AlGaN Centered Defect Quantum Box (CDQB) Nanocrystal,” Submitted to Solid state J. (2007).
  13. A. Rostami, H. Rasooli Saghai, and H. Baghban, “A Proposal for Enhancement of Absorption Coefficient and Electroabsorption properties in GaN/AlGaN Centered Defect Quantum Box (CDQB) Nanocrystal,” Submitted to Physica B J. (2007).
  14. N. Suzuki, N. Iizuka, and K. Kaneko, “Simulation of Ultrafast GaN /AlN Intersubband Optical Switches,” IEICE Trans. Electron. E88-C, 342–348 (2005).
    [CrossRef]
  15. A. Asgari, M. Kalafi, and L. Faraone, “The Effects of GaN Capping Layer Thickness on Two-dimensional Electron Mobility in GaN/AlGaN/GaN Heterostructures,” Physica E 25, 431–437 (2005).
    [CrossRef]
  16. K. X. Guo and Y. B. Yu, “Nonlinear Optical Susceptibilities in Si/SiO2 Parabolic Quantum Dots,” Chin. J. Phys. 43, 932–940 (2005).
  17. J. Liu, Y. Bai, and G. Xiong, “Studies of the Second-order Nonlinear Optical Susceptibilities of GaN/AlGaN Quantum Well,” Physica E 23, 70–74 (2004).
    [CrossRef]
  18. P. Harrison, Quantum Wells, Wires and Dots (John Wiley, 2005).
    [CrossRef]
  19. P. K. Basu, Theory of Optical Processes in Semiconductors (Clarendon Press, Oxford, 1997).
  20. M. G. Barseghyan and A. A. Kirakosyan, “Light absorption by a two-dimensional quantum dot superlattice,” Physica E 27, 474–480 (2005).
    [CrossRef]
  21. N. Peyghambarian, S. W. Koch, and A. Mysyrowicz, Introduction to Semiconductor Optics, (Prentice Hall, 1993).
  22. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley, 2003).
  23. R. W. Boyd, Nonlinear Optics (Academic Press, 1992).
  24. B. Kochman, A. D. Stiff-Roberts, S. Chakrabarti, J. D. Phillips, S. Krishna, J. Singh, and P. Bhattacharya,“Absorption, Carrier Lifetime, and Gain in InAs-GaAs Quantum-Dot Infrared Photodetectors,” IEEE J. Quantum Electron. 39, 459–467 (2003).
    [CrossRef]
  25. K. Chang and J. B. Xia, “Spatially Separated Excitons in Quantum-Dot Quantum Well Structures,” Phys. Rev. B 57, 9780–9786 (1998).
    [CrossRef]
  26. Y. C. Chua, E. A. Decuir, Jr., B. S. Passmore, K. H. Sharif, M. O. Manasreha, Z. M. Wang, and G. J. Salamo, “Tuning In0.3Ga0.7As/GaAs multiple quantum dots for long-wavelength infrared detectors,” Appl. Phys. Lett. 85, 1003–1005 (2004).
    [CrossRef]
  27. K. X. Guo and Y. B. Yu, “Nonlinear Optical Susceptibilities in Si/SiO2 Parabolic Quantum Dots,” Chin. J. Phys. 43, 932–940 (2005).
  28. J. Liu, Y. Bai, and G. Xiong, “Studies of the Second-order Nonlinear Optical Susceptibilities of GaN/AlGaN Quantum Well,” Physica E 23, 70–74 (2004).
    [CrossRef]
  29. H. Rasooli Saghai, N. Sadoogi, and A. Rostami, “Ultra-High Detectivity Room Temperature THZ IRPhotodetector Based on Resonant Tunneling Spherical Centered Defect Quantum Dot (RT-SCDQD),” Submitted to Solid state J. (2007).
  30. S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nature Materials,  4, 138–142 (2005).
    [CrossRef] [PubMed]
  31. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. sergeant, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature,  442, 180–183 (2006).
    [CrossRef] [PubMed]
  32. G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visiblewavelength photodetectors,” Nature photonics,  1, 531–534 (2007).
    [CrossRef]
  33. K. K. Choi, The Physics of Quantum Well Infrared Photodetectors (World Scientific, 1997).
    [CrossRef]
  34. B. F. Levine, “Quantum -well infrared photodetectors,” J. Appl. Phys. 74, R1–R81 (1993).
    [CrossRef]
  35. T. Steiner, Semiconductor Nanostructures for Optoelectronic Applications (Artech House, Inc. Boston, London, 2004).
  36. X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A Resonant Tunneling Quantum-Dot Infrared Photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
    [CrossRef]
  37. X. H. Su, J. Yang, P. Bhattacharya, G. Ariyawansa, and A. G. Perera, “Terahertz detection with tunneling quantum dot intersublevel photodetector,” Appl. Phys. Lett. 89, 031117-1–031117-3 (2006).
    [CrossRef]
  38. G. Huang, J. Yang, P. Bhattacharya, G. Ariyawansa, and A. G. Perera, “A multicolor quantum dot intersublevel detector with photoresponse in the terahertz range,” Appl. Phys. Lett. 92, 011117 (2008).
    [CrossRef]
  39. A. B. Weerasekara, M. B. M. Rinzan, S. G. Matsik, A. G. U. Perera, M. Buchanan, H. C. Liu, G. von Winckel, A. Stintz, and S. Krishna, “n-Type GaAs/AlAs heterostructure detector with a 3.2 THz threshold frequency,” Opt. Lett. 32, 1335–1337 (2007).
    [CrossRef] [PubMed]

2008 (1)

G. Huang, J. Yang, P. Bhattacharya, G. Ariyawansa, and A. G. Perera, “A multicolor quantum dot intersublevel detector with photoresponse in the terahertz range,” Appl. Phys. Lett. 92, 011117 (2008).
[CrossRef]

2007 (3)

A. B. Weerasekara, M. B. M. Rinzan, S. G. Matsik, A. G. U. Perera, M. Buchanan, H. C. Liu, G. von Winckel, A. Stintz, and S. Krishna, “n-Type GaAs/AlAs heterostructure detector with a 3.2 THz threshold frequency,” Opt. Lett. 32, 1335–1337 (2007).
[CrossRef] [PubMed]

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visiblewavelength photodetectors,” Nature photonics,  1, 531–534 (2007).
[CrossRef]

A. Rostami and H. Rasooli Saghai, “A novel proposal for ultra-high optical nonlinearity in GaN/AlGaN spherical centered defect quantum dot (SCDQD),” Microelectron. J. 38, 342–351 (2007).
[CrossRef]

2006 (3)

X. Zhang, G. Xiong, and X. Feng, “Well Width-dependent Third-order Optical Nonlinearities of a ZnS/CdSe Cylindrical Quantum Dot Quantum Well,” Physica E 33, 120–124 (2006).
[CrossRef]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. sergeant, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature,  442, 180–183 (2006).
[CrossRef] [PubMed]

X. H. Su, J. Yang, P. Bhattacharya, G. Ariyawansa, and A. G. Perera, “Terahertz detection with tunneling quantum dot intersublevel photodetector,” Appl. Phys. Lett. 89, 031117-1–031117-3 (2006).
[CrossRef]

2005 (7)

X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A Resonant Tunneling Quantum-Dot Infrared Photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
[CrossRef]

S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nature Materials,  4, 138–142 (2005).
[CrossRef] [PubMed]

N. Suzuki, N. Iizuka, and K. Kaneko, “Simulation of Ultrafast GaN /AlN Intersubband Optical Switches,” IEICE Trans. Electron. E88-C, 342–348 (2005).
[CrossRef]

A. Asgari, M. Kalafi, and L. Faraone, “The Effects of GaN Capping Layer Thickness on Two-dimensional Electron Mobility in GaN/AlGaN/GaN Heterostructures,” Physica E 25, 431–437 (2005).
[CrossRef]

K. X. Guo and Y. B. Yu, “Nonlinear Optical Susceptibilities in Si/SiO2 Parabolic Quantum Dots,” Chin. J. Phys. 43, 932–940 (2005).

M. G. Barseghyan and A. A. Kirakosyan, “Light absorption by a two-dimensional quantum dot superlattice,” Physica E 27, 474–480 (2005).
[CrossRef]

K. X. Guo and Y. B. Yu, “Nonlinear Optical Susceptibilities in Si/SiO2 Parabolic Quantum Dots,” Chin. J. Phys. 43, 932–940 (2005).

2004 (5)

J. Liu, Y. Bai, and G. Xiong, “Studies of the Second-order Nonlinear Optical Susceptibilities of GaN/AlGaN Quantum Well,” Physica E 23, 70–74 (2004).
[CrossRef]

J. Liu, Y. Bai, and G. Xiong, “Studies of the Second-order Nonlinear Optical Susceptibilities of GaN/AlGaN Quantum Well,” Physica E 23, 70–74 (2004).
[CrossRef]

V. Ryzhii, I. Khmyrova, M. Ryzhii, and V. Mitin, “Comparison of dark current, responsivity and detectivity in different intersubband infrared photodetectors,” Semicond. Sci. Technol. 19, 8–16 (2004).
[CrossRef]

J. Liu, Y. Bai, and G. Xiong, “Studies of the Second-order Nonlinear Optical Susceptibilities of GaN/AlGaN Quantum Well,” Physica E 23, 70–74 (2004).
[CrossRef]

Y. C. Chua, E. A. Decuir, Jr., B. S. Passmore, K. H. Sharif, M. O. Manasreha, Z. M. Wang, and G. J. Salamo, “Tuning In0.3Ga0.7As/GaAs multiple quantum dots for long-wavelength infrared detectors,” Appl. Phys. Lett. 85, 1003–1005 (2004).
[CrossRef]

2003 (1)

B. Kochman, A. D. Stiff-Roberts, S. Chakrabarti, J. D. Phillips, S. Krishna, J. Singh, and P. Bhattacharya,“Absorption, Carrier Lifetime, and Gain in InAs-GaAs Quantum-Dot Infrared Photodetectors,” IEEE J. Quantum Electron. 39, 459–467 (2003).
[CrossRef]

2001 (2)

S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J. M. Ortega, and J. M. Gerard, “Second-harmonic Generation Resonant with S-P Transition in InAs/GaAs Self-assembled Quantum Dots,” Phys. Rev. B 63, 113312_1–113312_4 (2001).
[CrossRef]

S. Ghosh, A. S. Lenihan, M. V. G. Dutt, O. Qasaimeh, D. G. Steel, and P. Bhattacharya, “Nonlinear Optical and Electro-optic Properties of InAs/GaAs Self-organized Quantum Dots,” J. Vac. Sci. Technol. B. 19, 1455–1458 (2001).
[CrossRef]

1999 (2)

T. Brunhes, P. Boucaud, S. Sauvage, F. Glotin, R. Prazeres, J. -M. Ortega, A. Lemaitre, and J.-M. Gerard, “Midinfrared Second-harmonic Generation in P-type InAs/GaAs Self-assembled Quantum Dots,” Appl. Phys. Lett. 75, 835–837 (1999).
[CrossRef]

J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, “Intersubband absorption in boron-doped multiple Ge quantum dots,” Appl. Phys. Lett. 74, 185–187 (1999).
[CrossRef]

1998 (1)

K. Chang and J. B. Xia, “Spatially Separated Excitons in Quantum-Dot Quantum Well Structures,” Phys. Rev. B 57, 9780–9786 (1998).
[CrossRef]

1997 (1)

K. W. Berryman, S. A. Lyon, and M. Segev, “Mid-infrared photoconductivity in InAs quantum dots,” Appl. Phys. Lett. 70, 1861–1863 (1997).
[CrossRef]

1993 (1)

B. F. Levine, “Quantum -well infrared photodetectors,” J. Appl. Phys. 74, R1–R81 (1993).
[CrossRef]

1989 (1)

E. Rosencher, P. Bois, J. Nagle, and S. Delaitre, “Second Harmonic Generation by Intersubband Transitions in Compositionally Asymmetrical MQWs,” Electron. Lett. 25, 1063–1065 (1989).
[CrossRef]

Ariyawansa, G.

G. Huang, J. Yang, P. Bhattacharya, G. Ariyawansa, and A. G. Perera, “A multicolor quantum dot intersublevel detector with photoresponse in the terahertz range,” Appl. Phys. Lett. 92, 011117 (2008).
[CrossRef]

X. H. Su, J. Yang, P. Bhattacharya, G. Ariyawansa, and A. G. Perera, “Terahertz detection with tunneling quantum dot intersublevel photodetector,” Appl. Phys. Lett. 89, 031117-1–031117-3 (2006).
[CrossRef]

X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A Resonant Tunneling Quantum-Dot Infrared Photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
[CrossRef]

Asgari, A.

A. Asgari, M. Kalafi, and L. Faraone, “The Effects of GaN Capping Layer Thickness on Two-dimensional Electron Mobility in GaN/AlGaN/GaN Heterostructures,” Physica E 25, 431–437 (2005).
[CrossRef]

Baghban, H.

A. Rostami, H. Rasooli Saghai, and H. Baghban, “A Proposal for Enhancement of Absorption Coefficient and Electroabsorption properties in GaN/AlGaN Centered Defect Quantum Box (CDQB) Nanocrystal,” Submitted to Physica B J. (2007).

A. Rostami, H. Rasooli Saghai, and H. Baghban, “A Proposal for Enhancement of Optical Nonlinearity in GaN/AlGaN Centered Defect Quantum Box (CDQB) Nanocrystal,” Submitted to Solid state J. (2007).

Bai, Y.

J. Liu, Y. Bai, and G. Xiong, “Studies of the Second-order Nonlinear Optical Susceptibilities of GaN/AlGaN Quantum Well,” Physica E 23, 70–74 (2004).
[CrossRef]

J. Liu, Y. Bai, and G. Xiong, “Studies of the Second-order Nonlinear Optical Susceptibilities of GaN/AlGaN Quantum Well,” Physica E 23, 70–74 (2004).
[CrossRef]

J. Liu, Y. Bai, and G. Xiong, “Studies of the Second-order Nonlinear Optical Susceptibilities of GaN/AlGaN Quantum Well,” Physica E 23, 70–74 (2004).
[CrossRef]

Balandin, A.

J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, “Intersubband absorption in boron-doped multiple Ge quantum dots,” Appl. Phys. Lett. 74, 185–187 (1999).
[CrossRef]

Banerjee, S.

S. Banerjee and K. A. Shore, “MIR and NIR Nonlinear Optical Processing using Intersubband χ(3) in triple Quantum Well Structures,” Inst. Phys. Publish. UK.655–660l (2003).

Barseghyan, M. G.

M. G. Barseghyan and A. A. Kirakosyan, “Light absorption by a two-dimensional quantum dot superlattice,” Physica E 27, 474–480 (2005).
[CrossRef]

Basu, P. K.

P. K. Basu, Theory of Optical Processes in Semiconductors (Clarendon Press, Oxford, 1997).

Berryman, K. W.

K. W. Berryman, S. A. Lyon, and M. Segev, “Mid-infrared photoconductivity in InAs quantum dots,” Appl. Phys. Lett. 70, 1861–1863 (1997).
[CrossRef]

Bhattacharya, P.

G. Huang, J. Yang, P. Bhattacharya, G. Ariyawansa, and A. G. Perera, “A multicolor quantum dot intersublevel detector with photoresponse in the terahertz range,” Appl. Phys. Lett. 92, 011117 (2008).
[CrossRef]

X. H. Su, J. Yang, P. Bhattacharya, G. Ariyawansa, and A. G. Perera, “Terahertz detection with tunneling quantum dot intersublevel photodetector,” Appl. Phys. Lett. 89, 031117-1–031117-3 (2006).
[CrossRef]

X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A Resonant Tunneling Quantum-Dot Infrared Photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
[CrossRef]

B. Kochman, A. D. Stiff-Roberts, S. Chakrabarti, J. D. Phillips, S. Krishna, J. Singh, and P. Bhattacharya,“Absorption, Carrier Lifetime, and Gain in InAs-GaAs Quantum-Dot Infrared Photodetectors,” IEEE J. Quantum Electron. 39, 459–467 (2003).
[CrossRef]

S. Ghosh, A. S. Lenihan, M. V. G. Dutt, O. Qasaimeh, D. G. Steel, and P. Bhattacharya, “Nonlinear Optical and Electro-optic Properties of InAs/GaAs Self-organized Quantum Dots,” J. Vac. Sci. Technol. B. 19, 1455–1458 (2001).
[CrossRef]

Bois, P.

E. Rosencher, P. Bois, J. Nagle, and S. Delaitre, “Second Harmonic Generation by Intersubband Transitions in Compositionally Asymmetrical MQWs,” Electron. Lett. 25, 1063–1065 (1989).
[CrossRef]

Boucaud, P.

S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J. M. Ortega, and J. M. Gerard, “Second-harmonic Generation Resonant with S-P Transition in InAs/GaAs Self-assembled Quantum Dots,” Phys. Rev. B 63, 113312_1–113312_4 (2001).
[CrossRef]

T. Brunhes, P. Boucaud, S. Sauvage, F. Glotin, R. Prazeres, J. -M. Ortega, A. Lemaitre, and J.-M. Gerard, “Midinfrared Second-harmonic Generation in P-type InAs/GaAs Self-assembled Quantum Dots,” Appl. Phys. Lett. 75, 835–837 (1999).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic Press, 1992).

Brunhes, T.

S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J. M. Ortega, and J. M. Gerard, “Second-harmonic Generation Resonant with S-P Transition in InAs/GaAs Self-assembled Quantum Dots,” Phys. Rev. B 63, 113312_1–113312_4 (2001).
[CrossRef]

T. Brunhes, P. Boucaud, S. Sauvage, F. Glotin, R. Prazeres, J. -M. Ortega, A. Lemaitre, and J.-M. Gerard, “Midinfrared Second-harmonic Generation in P-type InAs/GaAs Self-assembled Quantum Dots,” Appl. Phys. Lett. 75, 835–837 (1999).
[CrossRef]

Buchanan, M.

Chakrabarti, S.

X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A Resonant Tunneling Quantum-Dot Infrared Photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
[CrossRef]

B. Kochman, A. D. Stiff-Roberts, S. Chakrabarti, J. D. Phillips, S. Krishna, J. Singh, and P. Bhattacharya,“Absorption, Carrier Lifetime, and Gain in InAs-GaAs Quantum-Dot Infrared Photodetectors,” IEEE J. Quantum Electron. 39, 459–467 (2003).
[CrossRef]

Chang, K.

K. Chang and J. B. Xia, “Spatially Separated Excitons in Quantum-Dot Quantum Well Structures,” Phys. Rev. B 57, 9780–9786 (1998).
[CrossRef]

Choi, K. K.

K. K. Choi, The Physics of Quantum Well Infrared Photodetectors (World Scientific, 1997).
[CrossRef]

Chua, Y. C.

Y. C. Chua, E. A. Decuir, Jr., B. S. Passmore, K. H. Sharif, M. O. Manasreha, Z. M. Wang, and G. J. Salamo, “Tuning In0.3Ga0.7As/GaAs multiple quantum dots for long-wavelength infrared detectors,” Appl. Phys. Lett. 85, 1003–1005 (2004).
[CrossRef]

Clifford, J.

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visiblewavelength photodetectors,” Nature photonics,  1, 531–534 (2007).
[CrossRef]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. sergeant, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature,  442, 180–183 (2006).
[CrossRef] [PubMed]

Cyr, P. W.

S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nature Materials,  4, 138–142 (2005).
[CrossRef] [PubMed]

Decuir, Jr., E. A.

Y. C. Chua, E. A. Decuir, Jr., B. S. Passmore, K. H. Sharif, M. O. Manasreha, Z. M. Wang, and G. J. Salamo, “Tuning In0.3Ga0.7As/GaAs multiple quantum dots for long-wavelength infrared detectors,” Appl. Phys. Lett. 85, 1003–1005 (2004).
[CrossRef]

Delaitre, S.

E. Rosencher, P. Bois, J. Nagle, and S. Delaitre, “Second Harmonic Generation by Intersubband Transitions in Compositionally Asymmetrical MQWs,” Electron. Lett. 25, 1063–1065 (1989).
[CrossRef]

Dutt, M. V. G.

S. Ghosh, A. S. Lenihan, M. V. G. Dutt, O. Qasaimeh, D. G. Steel, and P. Bhattacharya, “Nonlinear Optical and Electro-optic Properties of InAs/GaAs Self-organized Quantum Dots,” J. Vac. Sci. Technol. B. 19, 1455–1458 (2001).
[CrossRef]

Faraone, L.

A. Asgari, M. Kalafi, and L. Faraone, “The Effects of GaN Capping Layer Thickness on Two-dimensional Electron Mobility in GaN/AlGaN/GaN Heterostructures,” Physica E 25, 431–437 (2005).
[CrossRef]

Feng, X.

X. Zhang, G. Xiong, and X. Feng, “Well Width-dependent Third-order Optical Nonlinearities of a ZnS/CdSe Cylindrical Quantum Dot Quantum Well,” Physica E 33, 120–124 (2006).
[CrossRef]

Fischer, A.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. sergeant, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature,  442, 180–183 (2006).
[CrossRef] [PubMed]

Gerard, J. M.

S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J. M. Ortega, and J. M. Gerard, “Second-harmonic Generation Resonant with S-P Transition in InAs/GaAs Self-assembled Quantum Dots,” Phys. Rev. B 63, 113312_1–113312_4 (2001).
[CrossRef]

Gerard, J.-M.

T. Brunhes, P. Boucaud, S. Sauvage, F. Glotin, R. Prazeres, J. -M. Ortega, A. Lemaitre, and J.-M. Gerard, “Midinfrared Second-harmonic Generation in P-type InAs/GaAs Self-assembled Quantum Dots,” Appl. Phys. Lett. 75, 835–837 (1999).
[CrossRef]

Ghosh, S.

S. Ghosh, A. S. Lenihan, M. V. G. Dutt, O. Qasaimeh, D. G. Steel, and P. Bhattacharya, “Nonlinear Optical and Electro-optic Properties of InAs/GaAs Self-organized Quantum Dots,” J. Vac. Sci. Technol. B. 19, 1455–1458 (2001).
[CrossRef]

Glotin, F.

S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J. M. Ortega, and J. M. Gerard, “Second-harmonic Generation Resonant with S-P Transition in InAs/GaAs Self-assembled Quantum Dots,” Phys. Rev. B 63, 113312_1–113312_4 (2001).
[CrossRef]

T. Brunhes, P. Boucaud, S. Sauvage, F. Glotin, R. Prazeres, J. -M. Ortega, A. Lemaitre, and J.-M. Gerard, “Midinfrared Second-harmonic Generation in P-type InAs/GaAs Self-assembled Quantum Dots,” Appl. Phys. Lett. 75, 835–837 (1999).
[CrossRef]

Guo, K. X.

K. X. Guo and Y. B. Yu, “Nonlinear Optical Susceptibilities in Si/SiO2 Parabolic Quantum Dots,” Chin. J. Phys. 43, 932–940 (2005).

K. X. Guo and Y. B. Yu, “Nonlinear Optical Susceptibilities in Si/SiO2 Parabolic Quantum Dots,” Chin. J. Phys. 43, 932–940 (2005).

Harrison, P.

P. Harrison, Quantum Wells, Wires and Dots (John Wiley, 2005).
[CrossRef]

Hoogland, S.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. sergeant, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature,  442, 180–183 (2006).
[CrossRef] [PubMed]

Howard, I.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. sergeant, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature,  442, 180–183 (2006).
[CrossRef] [PubMed]

Huang, G.

G. Huang, J. Yang, P. Bhattacharya, G. Ariyawansa, and A. G. Perera, “A multicolor quantum dot intersublevel detector with photoresponse in the terahertz range,” Appl. Phys. Lett. 92, 011117 (2008).
[CrossRef]

Iizuka, N.

N. Suzuki, N. Iizuka, and K. Kaneko, “Simulation of Ultrafast GaN /AlN Intersubband Optical Switches,” IEICE Trans. Electron. E88-C, 342–348 (2005).
[CrossRef]

Jin, G. L.

J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, “Intersubband absorption in boron-doped multiple Ge quantum dots,” Appl. Phys. Lett. 74, 185–187 (1999).
[CrossRef]

Kalafi, M.

A. Asgari, M. Kalafi, and L. Faraone, “The Effects of GaN Capping Layer Thickness on Two-dimensional Electron Mobility in GaN/AlGaN/GaN Heterostructures,” Physica E 25, 431–437 (2005).
[CrossRef]

Kaneko, K.

N. Suzuki, N. Iizuka, and K. Kaneko, “Simulation of Ultrafast GaN /AlN Intersubband Optical Switches,” IEICE Trans. Electron. E88-C, 342–348 (2005).
[CrossRef]

Khmyrova, I.

V. Ryzhii, I. Khmyrova, M. Ryzhii, and V. Mitin, “Comparison of dark current, responsivity and detectivity in different intersubband infrared photodetectors,” Semicond. Sci. Technol. 19, 8–16 (2004).
[CrossRef]

Kirakosyan, A. A.

M. G. Barseghyan and A. A. Kirakosyan, “Light absorption by a two-dimensional quantum dot superlattice,” Physica E 27, 474–480 (2005).
[CrossRef]

Klem, E.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. sergeant, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature,  442, 180–183 (2006).
[CrossRef] [PubMed]

Klem, E. J. D.

S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nature Materials,  4, 138–142 (2005).
[CrossRef] [PubMed]

Koch, S. W.

N. Peyghambarian, S. W. Koch, and A. Mysyrowicz, Introduction to Semiconductor Optics, (Prentice Hall, 1993).

Kochman, B.

B. Kochman, A. D. Stiff-Roberts, S. Chakrabarti, J. D. Phillips, S. Krishna, J. Singh, and P. Bhattacharya,“Absorption, Carrier Lifetime, and Gain in InAs-GaAs Quantum-Dot Infrared Photodetectors,” IEEE J. Quantum Electron. 39, 459–467 (2003).
[CrossRef]

Konstantatos, G.

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visiblewavelength photodetectors,” Nature photonics,  1, 531–534 (2007).
[CrossRef]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. sergeant, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature,  442, 180–183 (2006).
[CrossRef] [PubMed]

S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nature Materials,  4, 138–142 (2005).
[CrossRef] [PubMed]

Krishna, S.

A. B. Weerasekara, M. B. M. Rinzan, S. G. Matsik, A. G. U. Perera, M. Buchanan, H. C. Liu, G. von Winckel, A. Stintz, and S. Krishna, “n-Type GaAs/AlAs heterostructure detector with a 3.2 THz threshold frequency,” Opt. Lett. 32, 1335–1337 (2007).
[CrossRef] [PubMed]

B. Kochman, A. D. Stiff-Roberts, S. Chakrabarti, J. D. Phillips, S. Krishna, J. Singh, and P. Bhattacharya,“Absorption, Carrier Lifetime, and Gain in InAs-GaAs Quantum-Dot Infrared Photodetectors,” IEEE J. Quantum Electron. 39, 459–467 (2003).
[CrossRef]

Lemaitre, A.

T. Brunhes, P. Boucaud, S. Sauvage, F. Glotin, R. Prazeres, J. -M. Ortega, A. Lemaitre, and J.-M. Gerard, “Midinfrared Second-harmonic Generation in P-type InAs/GaAs Self-assembled Quantum Dots,” Appl. Phys. Lett. 75, 835–837 (1999).
[CrossRef]

Lenihan, A. S.

S. Ghosh, A. S. Lenihan, M. V. G. Dutt, O. Qasaimeh, D. G. Steel, and P. Bhattacharya, “Nonlinear Optical and Electro-optic Properties of InAs/GaAs Self-organized Quantum Dots,” J. Vac. Sci. Technol. B. 19, 1455–1458 (2001).
[CrossRef]

Levina, L.

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visiblewavelength photodetectors,” Nature photonics,  1, 531–534 (2007).
[CrossRef]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. sergeant, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature,  442, 180–183 (2006).
[CrossRef] [PubMed]

S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nature Materials,  4, 138–142 (2005).
[CrossRef] [PubMed]

Levine, B. F.

B. F. Levine, “Quantum -well infrared photodetectors,” J. Appl. Phys. 74, R1–R81 (1993).
[CrossRef]

Liu, H. C.

Liu, J.

J. Liu, Y. Bai, and G. Xiong, “Studies of the Second-order Nonlinear Optical Susceptibilities of GaN/AlGaN Quantum Well,” Physica E 23, 70–74 (2004).
[CrossRef]

J. Liu, Y. Bai, and G. Xiong, “Studies of the Second-order Nonlinear Optical Susceptibilities of GaN/AlGaN Quantum Well,” Physica E 23, 70–74 (2004).
[CrossRef]

J. Liu, Y. Bai, and G. Xiong, “Studies of the Second-order Nonlinear Optical Susceptibilities of GaN/AlGaN Quantum Well,” Physica E 23, 70–74 (2004).
[CrossRef]

Liu, J. L.

J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, “Intersubband absorption in boron-doped multiple Ge quantum dots,” Appl. Phys. Lett. 74, 185–187 (1999).
[CrossRef]

Lyon, S. A.

K. W. Berryman, S. A. Lyon, and M. Segev, “Mid-infrared photoconductivity in InAs quantum dots,” Appl. Phys. Lett. 70, 1861–1863 (1997).
[CrossRef]

Manasreha, M. O.

Y. C. Chua, E. A. Decuir, Jr., B. S. Passmore, K. H. Sharif, M. O. Manasreha, Z. M. Wang, and G. J. Salamo, “Tuning In0.3Ga0.7As/GaAs multiple quantum dots for long-wavelength infrared detectors,” Appl. Phys. Lett. 85, 1003–1005 (2004).
[CrossRef]

Matsik, S. G.

Mcdonald, S. A.

S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nature Materials,  4, 138–142 (2005).
[CrossRef] [PubMed]

Mitin, V.

V. Ryzhii, I. Khmyrova, M. Ryzhii, and V. Mitin, “Comparison of dark current, responsivity and detectivity in different intersubband infrared photodetectors,” Semicond. Sci. Technol. 19, 8–16 (2004).
[CrossRef]

Mysyrowicz, A.

N. Peyghambarian, S. W. Koch, and A. Mysyrowicz, Introduction to Semiconductor Optics, (Prentice Hall, 1993).

Nagle, J.

E. Rosencher, P. Bois, J. Nagle, and S. Delaitre, “Second Harmonic Generation by Intersubband Transitions in Compositionally Asymmetrical MQWs,” Electron. Lett. 25, 1063–1065 (1989).
[CrossRef]

Ortega, J. M.

S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J. M. Ortega, and J. M. Gerard, “Second-harmonic Generation Resonant with S-P Transition in InAs/GaAs Self-assembled Quantum Dots,” Phys. Rev. B 63, 113312_1–113312_4 (2001).
[CrossRef]

Ortega, J. -M.

T. Brunhes, P. Boucaud, S. Sauvage, F. Glotin, R. Prazeres, J. -M. Ortega, A. Lemaitre, and J.-M. Gerard, “Midinfrared Second-harmonic Generation in P-type InAs/GaAs Self-assembled Quantum Dots,” Appl. Phys. Lett. 75, 835–837 (1999).
[CrossRef]

Passmore, B. S.

Y. C. Chua, E. A. Decuir, Jr., B. S. Passmore, K. H. Sharif, M. O. Manasreha, Z. M. Wang, and G. J. Salamo, “Tuning In0.3Ga0.7As/GaAs multiple quantum dots for long-wavelength infrared detectors,” Appl. Phys. Lett. 85, 1003–1005 (2004).
[CrossRef]

Perera, A. G.

G. Huang, J. Yang, P. Bhattacharya, G. Ariyawansa, and A. G. Perera, “A multicolor quantum dot intersublevel detector with photoresponse in the terahertz range,” Appl. Phys. Lett. 92, 011117 (2008).
[CrossRef]

X. H. Su, J. Yang, P. Bhattacharya, G. Ariyawansa, and A. G. Perera, “Terahertz detection with tunneling quantum dot intersublevel photodetector,” Appl. Phys. Lett. 89, 031117-1–031117-3 (2006).
[CrossRef]

Perera, A. G. U.

A. B. Weerasekara, M. B. M. Rinzan, S. G. Matsik, A. G. U. Perera, M. Buchanan, H. C. Liu, G. von Winckel, A. Stintz, and S. Krishna, “n-Type GaAs/AlAs heterostructure detector with a 3.2 THz threshold frequency,” Opt. Lett. 32, 1335–1337 (2007).
[CrossRef] [PubMed]

X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A Resonant Tunneling Quantum-Dot Infrared Photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
[CrossRef]

Peyghambarian, N.

N. Peyghambarian, S. W. Koch, and A. Mysyrowicz, Introduction to Semiconductor Optics, (Prentice Hall, 1993).

Phillips, J. D.

B. Kochman, A. D. Stiff-Roberts, S. Chakrabarti, J. D. Phillips, S. Krishna, J. Singh, and P. Bhattacharya,“Absorption, Carrier Lifetime, and Gain in InAs-GaAs Quantum-Dot Infrared Photodetectors,” IEEE J. Quantum Electron. 39, 459–467 (2003).
[CrossRef]

Prazeres, R.

S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J. M. Ortega, and J. M. Gerard, “Second-harmonic Generation Resonant with S-P Transition in InAs/GaAs Self-assembled Quantum Dots,” Phys. Rev. B 63, 113312_1–113312_4 (2001).
[CrossRef]

T. Brunhes, P. Boucaud, S. Sauvage, F. Glotin, R. Prazeres, J. -M. Ortega, A. Lemaitre, and J.-M. Gerard, “Midinfrared Second-harmonic Generation in P-type InAs/GaAs Self-assembled Quantum Dots,” Appl. Phys. Lett. 75, 835–837 (1999).
[CrossRef]

Qasaimeh, O.

S. Ghosh, A. S. Lenihan, M. V. G. Dutt, O. Qasaimeh, D. G. Steel, and P. Bhattacharya, “Nonlinear Optical and Electro-optic Properties of InAs/GaAs Self-organized Quantum Dots,” J. Vac. Sci. Technol. B. 19, 1455–1458 (2001).
[CrossRef]

Rinzan, M. B. M.

Rosencher, E.

E. Rosencher, P. Bois, J. Nagle, and S. Delaitre, “Second Harmonic Generation by Intersubband Transitions in Compositionally Asymmetrical MQWs,” Electron. Lett. 25, 1063–1065 (1989).
[CrossRef]

Rostami, A.

A. Rostami and H. Rasooli Saghai, “A novel proposal for ultra-high optical nonlinearity in GaN/AlGaN spherical centered defect quantum dot (SCDQD),” Microelectron. J. 38, 342–351 (2007).
[CrossRef]

A. Rostami, H. Rasooli Saghai, and H. Baghban, “A Proposal for Enhancement of Absorption Coefficient and Electroabsorption properties in GaN/AlGaN Centered Defect Quantum Box (CDQB) Nanocrystal,” Submitted to Physica B J. (2007).

A. Rostami, H. Rasooli Saghai, and H. Baghban, “A Proposal for Enhancement of Optical Nonlinearity in GaN/AlGaN Centered Defect Quantum Box (CDQB) Nanocrystal,” Submitted to Solid state J. (2007).

H. Rasooli Saghai, N. Sadoogi, and A. Rostami, “Ultra-High Detectivity Room Temperature THZ IRPhotodetector Based on Resonant Tunneling Spherical Centered Defect Quantum Dot (RT-SCDQD),” Submitted to Solid state J. (2007).

Ryzhii, M.

V. Ryzhii, I. Khmyrova, M. Ryzhii, and V. Mitin, “Comparison of dark current, responsivity and detectivity in different intersubband infrared photodetectors,” Semicond. Sci. Technol. 19, 8–16 (2004).
[CrossRef]

Ryzhii, V.

V. Ryzhii, I. Khmyrova, M. Ryzhii, and V. Mitin, “Comparison of dark current, responsivity and detectivity in different intersubband infrared photodetectors,” Semicond. Sci. Technol. 19, 8–16 (2004).
[CrossRef]

Sadoogi, N.

H. Rasooli Saghai, N. Sadoogi, and A. Rostami, “Ultra-High Detectivity Room Temperature THZ IRPhotodetector Based on Resonant Tunneling Spherical Centered Defect Quantum Dot (RT-SCDQD),” Submitted to Solid state J. (2007).

Saghai, H. Rasooli

A. Rostami and H. Rasooli Saghai, “A novel proposal for ultra-high optical nonlinearity in GaN/AlGaN spherical centered defect quantum dot (SCDQD),” Microelectron. J. 38, 342–351 (2007).
[CrossRef]

A. Rostami, H. Rasooli Saghai, and H. Baghban, “A Proposal for Enhancement of Absorption Coefficient and Electroabsorption properties in GaN/AlGaN Centered Defect Quantum Box (CDQB) Nanocrystal,” Submitted to Physica B J. (2007).

H. Rasooli Saghai, N. Sadoogi, and A. Rostami, “Ultra-High Detectivity Room Temperature THZ IRPhotodetector Based on Resonant Tunneling Spherical Centered Defect Quantum Dot (RT-SCDQD),” Submitted to Solid state J. (2007).

A. Rostami, H. Rasooli Saghai, and H. Baghban, “A Proposal for Enhancement of Optical Nonlinearity in GaN/AlGaN Centered Defect Quantum Box (CDQB) Nanocrystal,” Submitted to Solid state J. (2007).

Salamo, G. J.

Y. C. Chua, E. A. Decuir, Jr., B. S. Passmore, K. H. Sharif, M. O. Manasreha, Z. M. Wang, and G. J. Salamo, “Tuning In0.3Ga0.7As/GaAs multiple quantum dots for long-wavelength infrared detectors,” Appl. Phys. Lett. 85, 1003–1005 (2004).
[CrossRef]

Sargent, E. H.

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visiblewavelength photodetectors,” Nature photonics,  1, 531–534 (2007).
[CrossRef]

S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nature Materials,  4, 138–142 (2005).
[CrossRef] [PubMed]

Sauvage, S.

S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J. M. Ortega, and J. M. Gerard, “Second-harmonic Generation Resonant with S-P Transition in InAs/GaAs Self-assembled Quantum Dots,” Phys. Rev. B 63, 113312_1–113312_4 (2001).
[CrossRef]

T. Brunhes, P. Boucaud, S. Sauvage, F. Glotin, R. Prazeres, J. -M. Ortega, A. Lemaitre, and J.-M. Gerard, “Midinfrared Second-harmonic Generation in P-type InAs/GaAs Self-assembled Quantum Dots,” Appl. Phys. Lett. 75, 835–837 (1999).
[CrossRef]

Segev, M.

K. W. Berryman, S. A. Lyon, and M. Segev, “Mid-infrared photoconductivity in InAs quantum dots,” Appl. Phys. Lett. 70, 1861–1863 (1997).
[CrossRef]

sergeant, E. H.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. sergeant, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature,  442, 180–183 (2006).
[CrossRef] [PubMed]

Sharif, K. H.

Y. C. Chua, E. A. Decuir, Jr., B. S. Passmore, K. H. Sharif, M. O. Manasreha, Z. M. Wang, and G. J. Salamo, “Tuning In0.3Ga0.7As/GaAs multiple quantum dots for long-wavelength infrared detectors,” Appl. Phys. Lett. 85, 1003–1005 (2004).
[CrossRef]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (John Wiley, 2003).

Shore, K. A.

S. Banerjee and K. A. Shore, “MIR and NIR Nonlinear Optical Processing using Intersubband χ(3) in triple Quantum Well Structures,” Inst. Phys. Publish. UK.655–660l (2003).

Singh, J.

B. Kochman, A. D. Stiff-Roberts, S. Chakrabarti, J. D. Phillips, S. Krishna, J. Singh, and P. Bhattacharya,“Absorption, Carrier Lifetime, and Gain in InAs-GaAs Quantum-Dot Infrared Photodetectors,” IEEE J. Quantum Electron. 39, 459–467 (2003).
[CrossRef]

Steel, D. G.

S. Ghosh, A. S. Lenihan, M. V. G. Dutt, O. Qasaimeh, D. G. Steel, and P. Bhattacharya, “Nonlinear Optical and Electro-optic Properties of InAs/GaAs Self-organized Quantum Dots,” J. Vac. Sci. Technol. B. 19, 1455–1458 (2001).
[CrossRef]

Steiner, T.

T. Steiner, Semiconductor Nanostructures for Optoelectronic Applications (Artech House, Inc. Boston, London, 2004).

Stiff-Roberts, A. D.

B. Kochman, A. D. Stiff-Roberts, S. Chakrabarti, J. D. Phillips, S. Krishna, J. Singh, and P. Bhattacharya,“Absorption, Carrier Lifetime, and Gain in InAs-GaAs Quantum-Dot Infrared Photodetectors,” IEEE J. Quantum Electron. 39, 459–467 (2003).
[CrossRef]

Stintz, A.

Su, X.

X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A Resonant Tunneling Quantum-Dot Infrared Photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
[CrossRef]

Su, X. H.

X. H. Su, J. Yang, P. Bhattacharya, G. Ariyawansa, and A. G. Perera, “Terahertz detection with tunneling quantum dot intersublevel photodetector,” Appl. Phys. Lett. 89, 031117-1–031117-3 (2006).
[CrossRef]

Suzuki, N.

N. Suzuki, N. Iizuka, and K. Kaneko, “Simulation of Ultrafast GaN /AlN Intersubband Optical Switches,” IEICE Trans. Electron. E88-C, 342–348 (2005).
[CrossRef]

von Winckel, G.

Wang, K. L.

J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, “Intersubband absorption in boron-doped multiple Ge quantum dots,” Appl. Phys. Lett. 74, 185–187 (1999).
[CrossRef]

Wang, Z. M.

Y. C. Chua, E. A. Decuir, Jr., B. S. Passmore, K. H. Sharif, M. O. Manasreha, Z. M. Wang, and G. J. Salamo, “Tuning In0.3Ga0.7As/GaAs multiple quantum dots for long-wavelength infrared detectors,” Appl. Phys. Lett. 85, 1003–1005 (2004).
[CrossRef]

Weerasekara, A. B.

Wu, W. G.

J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, “Intersubband absorption in boron-doped multiple Ge quantum dots,” Appl. Phys. Lett. 74, 185–187 (1999).
[CrossRef]

Xia, J. B.

K. Chang and J. B. Xia, “Spatially Separated Excitons in Quantum-Dot Quantum Well Structures,” Phys. Rev. B 57, 9780–9786 (1998).
[CrossRef]

Xiong, G.

X. Zhang, G. Xiong, and X. Feng, “Well Width-dependent Third-order Optical Nonlinearities of a ZnS/CdSe Cylindrical Quantum Dot Quantum Well,” Physica E 33, 120–124 (2006).
[CrossRef]

J. Liu, Y. Bai, and G. Xiong, “Studies of the Second-order Nonlinear Optical Susceptibilities of GaN/AlGaN Quantum Well,” Physica E 23, 70–74 (2004).
[CrossRef]

J. Liu, Y. Bai, and G. Xiong, “Studies of the Second-order Nonlinear Optical Susceptibilities of GaN/AlGaN Quantum Well,” Physica E 23, 70–74 (2004).
[CrossRef]

J. Liu, Y. Bai, and G. Xiong, “Studies of the Second-order Nonlinear Optical Susceptibilities of GaN/AlGaN Quantum Well,” Physica E 23, 70–74 (2004).
[CrossRef]

Yang, J.

G. Huang, J. Yang, P. Bhattacharya, G. Ariyawansa, and A. G. Perera, “A multicolor quantum dot intersublevel detector with photoresponse in the terahertz range,” Appl. Phys. Lett. 92, 011117 (2008).
[CrossRef]

X. H. Su, J. Yang, P. Bhattacharya, G. Ariyawansa, and A. G. Perera, “Terahertz detection with tunneling quantum dot intersublevel photodetector,” Appl. Phys. Lett. 89, 031117-1–031117-3 (2006).
[CrossRef]

Yu, Y. B.

K. X. Guo and Y. B. Yu, “Nonlinear Optical Susceptibilities in Si/SiO2 Parabolic Quantum Dots,” Chin. J. Phys. 43, 932–940 (2005).

K. X. Guo and Y. B. Yu, “Nonlinear Optical Susceptibilities in Si/SiO2 Parabolic Quantum Dots,” Chin. J. Phys. 43, 932–940 (2005).

Zhang, S.

S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nature Materials,  4, 138–142 (2005).
[CrossRef] [PubMed]

Zhang, X.

X. Zhang, G. Xiong, and X. Feng, “Well Width-dependent Third-order Optical Nonlinearities of a ZnS/CdSe Cylindrical Quantum Dot Quantum Well,” Physica E 33, 120–124 (2006).
[CrossRef]

Appl. Phys. Lett. (6)

T. Brunhes, P. Boucaud, S. Sauvage, F. Glotin, R. Prazeres, J. -M. Ortega, A. Lemaitre, and J.-M. Gerard, “Midinfrared Second-harmonic Generation in P-type InAs/GaAs Self-assembled Quantum Dots,” Appl. Phys. Lett. 75, 835–837 (1999).
[CrossRef]

K. W. Berryman, S. A. Lyon, and M. Segev, “Mid-infrared photoconductivity in InAs quantum dots,” Appl. Phys. Lett. 70, 1861–1863 (1997).
[CrossRef]

J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, “Intersubband absorption in boron-doped multiple Ge quantum dots,” Appl. Phys. Lett. 74, 185–187 (1999).
[CrossRef]

Y. C. Chua, E. A. Decuir, Jr., B. S. Passmore, K. H. Sharif, M. O. Manasreha, Z. M. Wang, and G. J. Salamo, “Tuning In0.3Ga0.7As/GaAs multiple quantum dots for long-wavelength infrared detectors,” Appl. Phys. Lett. 85, 1003–1005 (2004).
[CrossRef]

X. H. Su, J. Yang, P. Bhattacharya, G. Ariyawansa, and A. G. Perera, “Terahertz detection with tunneling quantum dot intersublevel photodetector,” Appl. Phys. Lett. 89, 031117-1–031117-3 (2006).
[CrossRef]

G. Huang, J. Yang, P. Bhattacharya, G. Ariyawansa, and A. G. Perera, “A multicolor quantum dot intersublevel detector with photoresponse in the terahertz range,” Appl. Phys. Lett. 92, 011117 (2008).
[CrossRef]

Chin. J. Phys. (2)

K. X. Guo and Y. B. Yu, “Nonlinear Optical Susceptibilities in Si/SiO2 Parabolic Quantum Dots,” Chin. J. Phys. 43, 932–940 (2005).

K. X. Guo and Y. B. Yu, “Nonlinear Optical Susceptibilities in Si/SiO2 Parabolic Quantum Dots,” Chin. J. Phys. 43, 932–940 (2005).

Electron. Lett. (1)

E. Rosencher, P. Bois, J. Nagle, and S. Delaitre, “Second Harmonic Generation by Intersubband Transitions in Compositionally Asymmetrical MQWs,” Electron. Lett. 25, 1063–1065 (1989).
[CrossRef]

IEEE J. Quantum Electron. (2)

B. Kochman, A. D. Stiff-Roberts, S. Chakrabarti, J. D. Phillips, S. Krishna, J. Singh, and P. Bhattacharya,“Absorption, Carrier Lifetime, and Gain in InAs-GaAs Quantum-Dot Infrared Photodetectors,” IEEE J. Quantum Electron. 39, 459–467 (2003).
[CrossRef]

X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A Resonant Tunneling Quantum-Dot Infrared Photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
[CrossRef]

IEICE Trans. Electron. (1)

N. Suzuki, N. Iizuka, and K. Kaneko, “Simulation of Ultrafast GaN /AlN Intersubband Optical Switches,” IEICE Trans. Electron. E88-C, 342–348 (2005).
[CrossRef]

J. Appl. Phys. (1)

B. F. Levine, “Quantum -well infrared photodetectors,” J. Appl. Phys. 74, R1–R81 (1993).
[CrossRef]

J. Vac. Sci. Technol. B. (1)

S. Ghosh, A. S. Lenihan, M. V. G. Dutt, O. Qasaimeh, D. G. Steel, and P. Bhattacharya, “Nonlinear Optical and Electro-optic Properties of InAs/GaAs Self-organized Quantum Dots,” J. Vac. Sci. Technol. B. 19, 1455–1458 (2001).
[CrossRef]

Microelectron. J. (1)

A. Rostami and H. Rasooli Saghai, “A novel proposal for ultra-high optical nonlinearity in GaN/AlGaN spherical centered defect quantum dot (SCDQD),” Microelectron. J. 38, 342–351 (2007).
[CrossRef]

Nature (1)

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. sergeant, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature,  442, 180–183 (2006).
[CrossRef] [PubMed]

Nature Materials (1)

S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nature Materials,  4, 138–142 (2005).
[CrossRef] [PubMed]

Nature photonics (1)

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visiblewavelength photodetectors,” Nature photonics,  1, 531–534 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (2)

K. Chang and J. B. Xia, “Spatially Separated Excitons in Quantum-Dot Quantum Well Structures,” Phys. Rev. B 57, 9780–9786 (1998).
[CrossRef]

S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J. M. Ortega, and J. M. Gerard, “Second-harmonic Generation Resonant with S-P Transition in InAs/GaAs Self-assembled Quantum Dots,” Phys. Rev. B 63, 113312_1–113312_4 (2001).
[CrossRef]

Physica E (6)

J. Liu, Y. Bai, and G. Xiong, “Studies of the Second-order Nonlinear Optical Susceptibilities of GaN/AlGaN Quantum Well,” Physica E 23, 70–74 (2004).
[CrossRef]

J. Liu, Y. Bai, and G. Xiong, “Studies of the Second-order Nonlinear Optical Susceptibilities of GaN/AlGaN Quantum Well,” Physica E 23, 70–74 (2004).
[CrossRef]

X. Zhang, G. Xiong, and X. Feng, “Well Width-dependent Third-order Optical Nonlinearities of a ZnS/CdSe Cylindrical Quantum Dot Quantum Well,” Physica E 33, 120–124 (2006).
[CrossRef]

A. Asgari, M. Kalafi, and L. Faraone, “The Effects of GaN Capping Layer Thickness on Two-dimensional Electron Mobility in GaN/AlGaN/GaN Heterostructures,” Physica E 25, 431–437 (2005).
[CrossRef]

M. G. Barseghyan and A. A. Kirakosyan, “Light absorption by a two-dimensional quantum dot superlattice,” Physica E 27, 474–480 (2005).
[CrossRef]

J. Liu, Y. Bai, and G. Xiong, “Studies of the Second-order Nonlinear Optical Susceptibilities of GaN/AlGaN Quantum Well,” Physica E 23, 70–74 (2004).
[CrossRef]

Semicond. Sci. Technol. (1)

V. Ryzhii, I. Khmyrova, M. Ryzhii, and V. Mitin, “Comparison of dark current, responsivity and detectivity in different intersubband infrared photodetectors,” Semicond. Sci. Technol. 19, 8–16 (2004).
[CrossRef]

Other (11)

S. Banerjee and K. A. Shore, “MIR and NIR Nonlinear Optical Processing using Intersubband χ(3) in triple Quantum Well Structures,” Inst. Phys. Publish. UK.655–660l (2003).

P. Harrison, Quantum Wells, Wires and Dots (John Wiley, 2005).
[CrossRef]

P. K. Basu, Theory of Optical Processes in Semiconductors (Clarendon Press, Oxford, 1997).

A. Rostami, H. Rasooli Saghai, and H. Baghban, “A Proposal for Enhancement of Optical Nonlinearity in GaN/AlGaN Centered Defect Quantum Box (CDQB) Nanocrystal,” Submitted to Solid state J. (2007).

A. Rostami, H. Rasooli Saghai, and H. Baghban, “A Proposal for Enhancement of Absorption Coefficient and Electroabsorption properties in GaN/AlGaN Centered Defect Quantum Box (CDQB) Nanocrystal,” Submitted to Physica B J. (2007).

H. Rasooli Saghai, N. Sadoogi, and A. Rostami, “Ultra-High Detectivity Room Temperature THZ IRPhotodetector Based on Resonant Tunneling Spherical Centered Defect Quantum Dot (RT-SCDQD),” Submitted to Solid state J. (2007).

K. K. Choi, The Physics of Quantum Well Infrared Photodetectors (World Scientific, 1997).
[CrossRef]

T. Steiner, Semiconductor Nanostructures for Optoelectronic Applications (Artech House, Inc. Boston, London, 2004).

N. Peyghambarian, S. W. Koch, and A. Mysyrowicz, Introduction to Semiconductor Optics, (Prentice Hall, 1993).

Y. R. Shen, The Principles of Nonlinear Optics (John Wiley, 2003).

R. W. Boyd, Nonlinear Optics (Academic Press, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) SCDQD structure and related spatial potential. (b) CDQB structure.

Fig. 2.
Fig. 2.

(a) Energy levels (ground and first excited states) vs. defect size (A°). (b) Wave functions vs. dot size (A°) with different defect sizes. (c) Dipole transition matrix element vs. defect size with different defect mole fractions (b=75 A°, xb=0.35) for SCDQD structure.

Fig. 3.
Fig. 3.

(a) Second-order nonlinear optical susceptibility. (b) Third order susceptibility of QEOE (m2/V2). (c) Third order susceptibility of THG (m2/V2) vs. pump photon energy with different defect size (b=75 A°, xb=0.35, xd=0.1, ħΓ=0.3 me V) for SCDQD structure.

Fig. 4.
Fig. 4.

(a) Energy levels. (b) Dipole matrix element & Fermi difference vs. external voltage. (c) Absorption coefficient (ground state → first excited state) vs. pump photon energy for different external voltages (D=10A°) (d) Absorption coefficient (ground state → third excited state) vs. pump photon energy (Barrier=120 A°,Well =80 A°, xb=0.45, xd= 0.1) for CDQB structure.

Fig. 5.
Fig. 5.

(a) Detectivity of different photodetector structures (with defect and double barrier (A: a=55 A°, b=70 A°, c=90 A°, d=110 A°, Lspacer=130 A°, xb=0.3, xd=0.1, Vext=2V), with defect without double barrier (B) and without defect without double barrier (C)) at 83 °K, (b) Detectivity of RT-SCDQD based THZ-IR photodetector at room temperature and (c) Absorption coefficient (ground state → first excited state) (xb=0.3, xd=0.1) vs. pump photon energy. Inset figure in part (b), shows 3-D scheme and potential distribution of RT-SCDQD.

Fig. 6.
Fig. 6.

Carrier sheet density of ground state, (a) with different central defect sizes (B=120 A°,W=80 A°, xb=0.35, xd=0.27). (b) with different deviations from center position. (c) QEOE (m2/V2). (d) THG (m2/V2) vs. pump photon energy with different deviation from center position (Barrier=120 A°, Well=80 A°, D=10 A°, xb=0.35, xd=0.27) for CDQB structure.

Tables (2)

Tables Icon

Table 1. Material parameters [15, 27, 28]

Tables Icon

Table 2. Comparison between detectivity of proposed structure and some experimental reported results

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

{ ħ 2 2 m i * x , y , z 2 + V i ( x , y , z ) } ψ ( x , y , z ) = E ψ ( x , y , z )
ε i * x , y , z 2 Φ ( x , y , z ) = e [ N D + ( x , y , z ) n ( x , y , z ) ]
V i ( x , y , z ) = E C i e Φ i ( x , y , z )
n ( x , y , z ) = 2 k ψ k ( x , y , z ) 2 { 1 + exp [ E k E F ] K B T } 1
+ N D + d ν = + n d ν
ψ n m = R n ( r ) Y m ( θ , ϕ ) ,
χ ( 2 ) = N d e 3 d ij 3 ε ħ 2 [ 1 ( ω ω ij i γ ij ) × ( 2 ω 2 ω ij i γ ij ) ]
χ ( 3 ) ( 2 ω 1 + ω 2 ; ω 1 , ω 2 ) = 2 i N d q 4 d ij 4 ε 0 ħ 3 [ 1 [ i ( ω 0 2 ω 1 + ω 2 ) + γ ij ] [ i ( ω 2 ω 1 ) + γ ij ] ] ×
[ 1 i ( ω 0 ω 1 ) + γ ij + 1 i ( ω 2 ω 0 ) + γ ij ] ,
α ( ω ) = 4 π ω e 2 V o ħ c ε 0 ε r i , j d ij 2 × { f ( E i ) f ( E j ) } × γ ij γ ij 2 + ( ω ω ij ) 2 ,

Metrics