Abstract

Wide-field Coherent Anti-Stokes Raman Scattering (CARS) microscopy is employed to identify saturated and unsaturated fatty acids in micro-emulsions and cells, using the ratio between the strong -C-H CARS signal at 2850cm-1 and the weak signal of the =C-H vibration around 3015cm-1 for distinction. Quantitative CARS imaging at the =C-H resonance is challenging, since it yields only a low CARS signal, and small differences on the order of 5% in the concentration of polyunsaturated fatty lipids have to be detected. For this purpose we draw advantage of the high signal-to-noise ratio of wide-field CARS microscopy that is achieved by an excitation geometry involving a “sheet-of-light”-type illumination.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Duncan, J. Reintjes, and T. J. Manuccia, "Scanning coherent anti-Stokes Raman microscope," Opt. Lett. 7, 350-352 (1982).
    [CrossRef] [PubMed]
  2. A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
    [CrossRef]
  3. J.-X. Cheng,  et al., "Laser-scanning coherent anti-stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83, 502 (2002).
    [CrossRef] [PubMed]
  4. J.-X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004).
    [CrossRef]
  5. A. Volkmer, J.-X. Cheng, and X. S. Xie, "Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy," Phys. Rev. Lett. 87, 023901 (2001).
    [CrossRef]
  6. G. L. Eesley, Coherent Raman Spectroscopy, (Pergamon Press, Oxford, 1981).
  7. H. A. Rinia, M. Bonn, M. Muller, and E. M. Vartiainen, "Quantitative CARS Spectroscopy using the maximum Entropy Method: The Main Lipid Phase Transition," ChemPhysChem 8, 279-287 (2007).
    [CrossRef]
  8. J.-X. Cheng, L. D. Book, and X. S. Xie, "Polarization coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 26, 1341-1343 (2001).
    [CrossRef]
  9. A. Volkmer, L. D. Book, and X. S. Xie, "Time-resolved coherent anti-Stokes Raman Scattering Microscopy: Imaging based on Raman free induction decay," Appl. Phys. Lett. 80, 1505-1507 (2002).
    [CrossRef]
  10. C. L. Evans, E. O. Potma, and X. S. Xie, "Coherent anti-Stokes Raman Scattering Spectral Interferometry: determination of the real and imaginary components of nonlinear susceptibility for vibrational microscopy," Opt. Lett. 29, 2923-2925 (2004).
    [CrossRef]
  11. T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, "Monitoring of lipid storage in Caenorhabditis elegans using Coherent Anti-Stokes Raman Scattering (CARS) Microscopy," PNAS 104, 14658-14663 (2007).
    [CrossRef] [PubMed]
  12. C. Heinrich, S. Bernet, and M. Ritsch-Marte, "Wide-field Coherent Anti-Stokes Raman Scattering Microscopy," Appl. Phys. Lett. 84, 816-818 (2004).
    [CrossRef]
  13. M. Jurna, J. P. Korterik, C. Otto, and H. L. Offerhaus, "Shot noise limited heterodyne detection of CARS signals," Opt. Express 15, 15207-15213 (2007).
    [CrossRef] [PubMed]
  14. V. V. Krishnamachari, and E. O. Potma, "Focus-engineered Coherent Anti-Stokes Raman Scattering Microscopy: a numerical investigation," J. Opt. Soc. Am. A 24, 1138-1147 (2007).
    [CrossRef]
  15. C. Liu, and D. Y. Kim, "Differential imaging in Coherent Anti-Stokes Raman Scattering Microscopy with Laguerre- Gaussian excitation beams," Opt. Express 15, 10123-10135 (2007).
    [CrossRef]
  16. I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, "Wide-field Coherent Anti-Stokes Raman Scattering Microscopy with non-phase-matching illumination," Opt. Lett. 32, 1941-1943 (2007).
    [CrossRef] [PubMed]
  17. U. Posset and W. Kiefer, "Interpretation of high resolution low-temperature v(C0) Raman spectra of polycrystalline chelate-substituted transition metal carbonyls," J. Mol. Struct. 349, 427-430 (1995).
  18. C. Heinrich, S. Bernet, and M. Ritsch-Marte, "Nanosecond microscopy with spectroscopic resolution," New J. Phys. 8, 36 (2006).
    [CrossRef]
  19. C. Heinrich, C. Meusburger, S. Bernet, and M. Ritsch-Marte, "CARS microscopy in a wide-field geometry with nanosecond pulses," J. Raman Spectrosc. 37, 675-679 (2006).
    [CrossRef]
  20. C. Heinrich, S. Bernet, and M. Ritsch-Marte, "Comment on "Wide-field Coherent Anti-Stokes Raman Scattering Microscopy with non-phase-matching illumination," Opt. Lett. 32, 3468-3469 (2007).
    [CrossRef] [PubMed]
  21. X. S. Xie, J. Yu, and W. Y. Yang, "Perspective - living cells as test tubes," Science 312, 228-230 (2006).
    [CrossRef] [PubMed]
  22. H. Sampath and J. M. Ntambi, "Polyunsaturated fatty acid regulation of gene expression," Nutr. Rev. 62, 333-339 (2004).
    [CrossRef] [PubMed]
  23. H. Green and M. Meuth, "An established pre-adipose cell line and its differentiation in culture," Cell 3, 127-133 (1974).
    [CrossRef] [PubMed]
  24. V. Baeten, P. Hourant, M. T. Morales, and R. Aparicio, "Oil and fat classification by FT-Raman Spectroscopy," J. Agric. Food Chem. 46, 2638-2646 (1998).
    [CrossRef]
  25. Altogether, 20 liposomes in 5 cells fed on stearic acid, and 28 liposomes in 7 cells fed on arachidonic acid were measured. The measured content of double bindings in the cells fed on stearic acid was constant within a relative variation of ±10%, whereas there was a strong fluctuation of ±40% within the group fed on arachidonic acid. On the other hand, both groups showed only a negligible concentration difference between the individual liposomes within single cells.

2007 (7)

2006 (3)

X. S. Xie, J. Yu, and W. Y. Yang, "Perspective - living cells as test tubes," Science 312, 228-230 (2006).
[CrossRef] [PubMed]

C. Heinrich, S. Bernet, and M. Ritsch-Marte, "Nanosecond microscopy with spectroscopic resolution," New J. Phys. 8, 36 (2006).
[CrossRef]

C. Heinrich, C. Meusburger, S. Bernet, and M. Ritsch-Marte, "CARS microscopy in a wide-field geometry with nanosecond pulses," J. Raman Spectrosc. 37, 675-679 (2006).
[CrossRef]

2004 (4)

H. Sampath and J. M. Ntambi, "Polyunsaturated fatty acid regulation of gene expression," Nutr. Rev. 62, 333-339 (2004).
[CrossRef] [PubMed]

J.-X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004).
[CrossRef]

C. Heinrich, S. Bernet, and M. Ritsch-Marte, "Wide-field Coherent Anti-Stokes Raman Scattering Microscopy," Appl. Phys. Lett. 84, 816-818 (2004).
[CrossRef]

C. L. Evans, E. O. Potma, and X. S. Xie, "Coherent anti-Stokes Raman Scattering Spectral Interferometry: determination of the real and imaginary components of nonlinear susceptibility for vibrational microscopy," Opt. Lett. 29, 2923-2925 (2004).
[CrossRef]

2002 (2)

J.-X. Cheng,  et al., "Laser-scanning coherent anti-stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83, 502 (2002).
[CrossRef] [PubMed]

A. Volkmer, L. D. Book, and X. S. Xie, "Time-resolved coherent anti-Stokes Raman Scattering Microscopy: Imaging based on Raman free induction decay," Appl. Phys. Lett. 80, 1505-1507 (2002).
[CrossRef]

2001 (2)

J.-X. Cheng, L. D. Book, and X. S. Xie, "Polarization coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 26, 1341-1343 (2001).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, "Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy," Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

1998 (1)

V. Baeten, P. Hourant, M. T. Morales, and R. Aparicio, "Oil and fat classification by FT-Raman Spectroscopy," J. Agric. Food Chem. 46, 2638-2646 (1998).
[CrossRef]

1982 (1)

1974 (1)

H. Green and M. Meuth, "An established pre-adipose cell line and its differentiation in culture," Cell 3, 127-133 (1974).
[CrossRef] [PubMed]

Aparicio, R.

V. Baeten, P. Hourant, M. T. Morales, and R. Aparicio, "Oil and fat classification by FT-Raman Spectroscopy," J. Agric. Food Chem. 46, 2638-2646 (1998).
[CrossRef]

Axäng, C.

T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, "Monitoring of lipid storage in Caenorhabditis elegans using Coherent Anti-Stokes Raman Scattering (CARS) Microscopy," PNAS 104, 14658-14663 (2007).
[CrossRef] [PubMed]

Baeten, V.

V. Baeten, P. Hourant, M. T. Morales, and R. Aparicio, "Oil and fat classification by FT-Raman Spectroscopy," J. Agric. Food Chem. 46, 2638-2646 (1998).
[CrossRef]

Bernet, S.

C. Heinrich, S. Bernet, and M. Ritsch-Marte, "Comment on "Wide-field Coherent Anti-Stokes Raman Scattering Microscopy with non-phase-matching illumination," Opt. Lett. 32, 3468-3469 (2007).
[CrossRef] [PubMed]

C. Heinrich, C. Meusburger, S. Bernet, and M. Ritsch-Marte, "CARS microscopy in a wide-field geometry with nanosecond pulses," J. Raman Spectrosc. 37, 675-679 (2006).
[CrossRef]

C. Heinrich, S. Bernet, and M. Ritsch-Marte, "Nanosecond microscopy with spectroscopic resolution," New J. Phys. 8, 36 (2006).
[CrossRef]

C. Heinrich, S. Bernet, and M. Ritsch-Marte, "Wide-field Coherent Anti-Stokes Raman Scattering Microscopy," Appl. Phys. Lett. 84, 816-818 (2004).
[CrossRef]

Bonn, M.

H. A. Rinia, M. Bonn, M. Muller, and E. M. Vartiainen, "Quantitative CARS Spectroscopy using the maximum Entropy Method: The Main Lipid Phase Transition," ChemPhysChem 8, 279-287 (2007).
[CrossRef]

Book, L. D.

A. Volkmer, L. D. Book, and X. S. Xie, "Time-resolved coherent anti-Stokes Raman Scattering Microscopy: Imaging based on Raman free induction decay," Appl. Phys. Lett. 80, 1505-1507 (2002).
[CrossRef]

J.-X. Cheng, L. D. Book, and X. S. Xie, "Polarization coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 26, 1341-1343 (2001).
[CrossRef]

Brackmann, C.

T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, "Monitoring of lipid storage in Caenorhabditis elegans using Coherent Anti-Stokes Raman Scattering (CARS) Microscopy," PNAS 104, 14658-14663 (2007).
[CrossRef] [PubMed]

Cheng, J.-X.

J.-X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004).
[CrossRef]

J.-X. Cheng,  et al., "Laser-scanning coherent anti-stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83, 502 (2002).
[CrossRef] [PubMed]

A. Volkmer, J.-X. Cheng, and X. S. Xie, "Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy," Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

J.-X. Cheng, L. D. Book, and X. S. Xie, "Polarization coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 26, 1341-1343 (2001).
[CrossRef]

Cohn, K.

Duncan, M. D.

Enejder, A.

T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, "Monitoring of lipid storage in Caenorhabditis elegans using Coherent Anti-Stokes Raman Scattering (CARS) Microscopy," PNAS 104, 14658-14663 (2007).
[CrossRef] [PubMed]

Evans, C. L.

Green, H.

H. Green and M. Meuth, "An established pre-adipose cell line and its differentiation in culture," Cell 3, 127-133 (1974).
[CrossRef] [PubMed]

Heinrich, C.

C. Heinrich, S. Bernet, and M. Ritsch-Marte, "Comment on "Wide-field Coherent Anti-Stokes Raman Scattering Microscopy with non-phase-matching illumination," Opt. Lett. 32, 3468-3469 (2007).
[CrossRef] [PubMed]

C. Heinrich, S. Bernet, and M. Ritsch-Marte, "Nanosecond microscopy with spectroscopic resolution," New J. Phys. 8, 36 (2006).
[CrossRef]

C. Heinrich, C. Meusburger, S. Bernet, and M. Ritsch-Marte, "CARS microscopy in a wide-field geometry with nanosecond pulses," J. Raman Spectrosc. 37, 675-679 (2006).
[CrossRef]

C. Heinrich, S. Bernet, and M. Ritsch-Marte, "Wide-field Coherent Anti-Stokes Raman Scattering Microscopy," Appl. Phys. Lett. 84, 816-818 (2004).
[CrossRef]

Hellerer, T.

T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, "Monitoring of lipid storage in Caenorhabditis elegans using Coherent Anti-Stokes Raman Scattering (CARS) Microscopy," PNAS 104, 14658-14663 (2007).
[CrossRef] [PubMed]

Hillertz, P.

T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, "Monitoring of lipid storage in Caenorhabditis elegans using Coherent Anti-Stokes Raman Scattering (CARS) Microscopy," PNAS 104, 14658-14663 (2007).
[CrossRef] [PubMed]

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Hourant, P.

V. Baeten, P. Hourant, M. T. Morales, and R. Aparicio, "Oil and fat classification by FT-Raman Spectroscopy," J. Agric. Food Chem. 46, 2638-2646 (1998).
[CrossRef]

Jurna, M.

Kim, D. Y.

Korterik, J. P.

Krishnamachari, V. V.

Liu, C.

Manuccia, T. J.

Meusburger, C.

C. Heinrich, C. Meusburger, S. Bernet, and M. Ritsch-Marte, "CARS microscopy in a wide-field geometry with nanosecond pulses," J. Raman Spectrosc. 37, 675-679 (2006).
[CrossRef]

Meuth, M.

H. Green and M. Meuth, "An established pre-adipose cell line and its differentiation in culture," Cell 3, 127-133 (1974).
[CrossRef] [PubMed]

Morales, M. T.

V. Baeten, P. Hourant, M. T. Morales, and R. Aparicio, "Oil and fat classification by FT-Raman Spectroscopy," J. Agric. Food Chem. 46, 2638-2646 (1998).
[CrossRef]

Muller, M.

H. A. Rinia, M. Bonn, M. Muller, and E. M. Vartiainen, "Quantitative CARS Spectroscopy using the maximum Entropy Method: The Main Lipid Phase Transition," ChemPhysChem 8, 279-287 (2007).
[CrossRef]

Ntambi, J. M.

H. Sampath and J. M. Ntambi, "Polyunsaturated fatty acid regulation of gene expression," Nutr. Rev. 62, 333-339 (2004).
[CrossRef] [PubMed]

Offerhaus, H. L.

Otto, C.

Palanker, D.

Pilon, M.

T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, "Monitoring of lipid storage in Caenorhabditis elegans using Coherent Anti-Stokes Raman Scattering (CARS) Microscopy," PNAS 104, 14658-14663 (2007).
[CrossRef] [PubMed]

Potma, E. O.

Reintjes, J.

Rinia, H. A.

H. A. Rinia, M. Bonn, M. Muller, and E. M. Vartiainen, "Quantitative CARS Spectroscopy using the maximum Entropy Method: The Main Lipid Phase Transition," ChemPhysChem 8, 279-287 (2007).
[CrossRef]

Ritsch-Marte, M.

C. Heinrich, S. Bernet, and M. Ritsch-Marte, "Comment on "Wide-field Coherent Anti-Stokes Raman Scattering Microscopy with non-phase-matching illumination," Opt. Lett. 32, 3468-3469 (2007).
[CrossRef] [PubMed]

C. Heinrich, C. Meusburger, S. Bernet, and M. Ritsch-Marte, "CARS microscopy in a wide-field geometry with nanosecond pulses," J. Raman Spectrosc. 37, 675-679 (2006).
[CrossRef]

C. Heinrich, S. Bernet, and M. Ritsch-Marte, "Nanosecond microscopy with spectroscopic resolution," New J. Phys. 8, 36 (2006).
[CrossRef]

C. Heinrich, S. Bernet, and M. Ritsch-Marte, "Wide-field Coherent Anti-Stokes Raman Scattering Microscopy," Appl. Phys. Lett. 84, 816-818 (2004).
[CrossRef]

Sampath, H.

H. Sampath and J. M. Ntambi, "Polyunsaturated fatty acid regulation of gene expression," Nutr. Rev. 62, 333-339 (2004).
[CrossRef] [PubMed]

Simanovskii, D.

Smith, T.

Toytman, I.

Vartiainen, E. M.

H. A. Rinia, M. Bonn, M. Muller, and E. M. Vartiainen, "Quantitative CARS Spectroscopy using the maximum Entropy Method: The Main Lipid Phase Transition," ChemPhysChem 8, 279-287 (2007).
[CrossRef]

Volkmer, A.

A. Volkmer, L. D. Book, and X. S. Xie, "Time-resolved coherent anti-Stokes Raman Scattering Microscopy: Imaging based on Raman free induction decay," Appl. Phys. Lett. 80, 1505-1507 (2002).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, "Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy," Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

Xie, X. S.

X. S. Xie, J. Yu, and W. Y. Yang, "Perspective - living cells as test tubes," Science 312, 228-230 (2006).
[CrossRef] [PubMed]

J.-X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004).
[CrossRef]

C. L. Evans, E. O. Potma, and X. S. Xie, "Coherent anti-Stokes Raman Scattering Spectral Interferometry: determination of the real and imaginary components of nonlinear susceptibility for vibrational microscopy," Opt. Lett. 29, 2923-2925 (2004).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, "Time-resolved coherent anti-Stokes Raman Scattering Microscopy: Imaging based on Raman free induction decay," Appl. Phys. Lett. 80, 1505-1507 (2002).
[CrossRef]

J.-X. Cheng, L. D. Book, and X. S. Xie, "Polarization coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 26, 1341-1343 (2001).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, "Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy," Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Yang, W. Y.

X. S. Xie, J. Yu, and W. Y. Yang, "Perspective - living cells as test tubes," Science 312, 228-230 (2006).
[CrossRef] [PubMed]

Yu, J.

X. S. Xie, J. Yu, and W. Y. Yang, "Perspective - living cells as test tubes," Science 312, 228-230 (2006).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

A. Volkmer, L. D. Book, and X. S. Xie, "Time-resolved coherent anti-Stokes Raman Scattering Microscopy: Imaging based on Raman free induction decay," Appl. Phys. Lett. 80, 1505-1507 (2002).
[CrossRef]

C. Heinrich, S. Bernet, and M. Ritsch-Marte, "Wide-field Coherent Anti-Stokes Raman Scattering Microscopy," Appl. Phys. Lett. 84, 816-818 (2004).
[CrossRef]

Biophys. J. (1)

J.-X. Cheng,  et al., "Laser-scanning coherent anti-stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83, 502 (2002).
[CrossRef] [PubMed]

Cell (1)

H. Green and M. Meuth, "An established pre-adipose cell line and its differentiation in culture," Cell 3, 127-133 (1974).
[CrossRef] [PubMed]

ChemPhysChem (1)

H. A. Rinia, M. Bonn, M. Muller, and E. M. Vartiainen, "Quantitative CARS Spectroscopy using the maximum Entropy Method: The Main Lipid Phase Transition," ChemPhysChem 8, 279-287 (2007).
[CrossRef]

J. Agric. Food Chem. (1)

V. Baeten, P. Hourant, M. T. Morales, and R. Aparicio, "Oil and fat classification by FT-Raman Spectroscopy," J. Agric. Food Chem. 46, 2638-2646 (1998).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

J.-X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004).
[CrossRef]

J. Raman Spectrosc. (1)

C. Heinrich, C. Meusburger, S. Bernet, and M. Ritsch-Marte, "CARS microscopy in a wide-field geometry with nanosecond pulses," J. Raman Spectrosc. 37, 675-679 (2006).
[CrossRef]

New J. Phys. (1)

C. Heinrich, S. Bernet, and M. Ritsch-Marte, "Nanosecond microscopy with spectroscopic resolution," New J. Phys. 8, 36 (2006).
[CrossRef]

Nutr. Rev. (1)

H. Sampath and J. M. Ntambi, "Polyunsaturated fatty acid regulation of gene expression," Nutr. Rev. 62, 333-339 (2004).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. Lett. (2)

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, "Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy," Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

PNAS (1)

T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, "Monitoring of lipid storage in Caenorhabditis elegans using Coherent Anti-Stokes Raman Scattering (CARS) Microscopy," PNAS 104, 14658-14663 (2007).
[CrossRef] [PubMed]

Science (1)

X. S. Xie, J. Yu, and W. Y. Yang, "Perspective - living cells as test tubes," Science 312, 228-230 (2006).
[CrossRef] [PubMed]

Other (3)

Altogether, 20 liposomes in 5 cells fed on stearic acid, and 28 liposomes in 7 cells fed on arachidonic acid were measured. The measured content of double bindings in the cells fed on stearic acid was constant within a relative variation of ±10%, whereas there was a strong fluctuation of ±40% within the group fed on arachidonic acid. On the other hand, both groups showed only a negligible concentration difference between the individual liposomes within single cells.

U. Posset and W. Kiefer, "Interpretation of high resolution low-temperature v(C0) Raman spectra of polycrystalline chelate-substituted transition metal carbonyls," J. Mol. Struct. 349, 427-430 (1995).

G. L. Eesley, Coherent Raman Spectroscopy, (Pergamon Press, Oxford, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Wide-field CARS microscopy corresponds to a combination of epi-fluorescence imaging with dark-field illumination. The near-infrared Pump (green) and Stokes beam (red) enter the microscope from different directions such that phase matching leads to an anti-Stokes signal beam (blue) travling anti-parallel with respect to the Stokes beam, i.e. back through the objective to the ICCD camera. The insert shows in more detail how the cone of light illumination by the ultra-dark-field condenser is achieved.

Fig. 2.
Fig. 2.

(A) CARS spectrum representing the typical CARS intensity distribution of lipids in the Raman shift region between 2750 and 3050 cm-1 showing a superposition of several different vibrational states of symmetric and asymmetric CH2 and CH3 stretching vibrations. The inset shows the Raman spectrum of linseed oil for comparison. (B) The resonance at 3015 cm-1 depends on the number of C=C double bonds, since it excites C-H stretching vibrations of a hydrogen attached to a C=C group and therefore varies strongly for different vegetable oils. (C) Dependence of the CARS signal intensity ration between the =C-H peaks at 3015 cm-1, and the -C-H peak at 2850 cm-1 on the corresponding ratio of the numbers of C=C double bindings and C-C single bindings.

Fig. 3.
Fig. 3.

(A) Dark-field illumination of various oil droplets inside a multi-component oil-in-water emulsion. (B) CARS signal generated at 2850 cm-1. (C) CARS signal generated at 3015 cm-1. The olive oil droplet at the bottom generates a weaker signal than the thistle oil droplet, the latter containing more of the targeted unsaturated fatty acids. (D) Off-resonant CARS signal at 3050 cm-1. The negative contrast arises from the displacement of the solvent in the illuminated sample slice. The image intensities in (C) and (D) are amplified by a factor of 3 with respect to (B).

Fig. 4.
Fig. 4.

Imaging of liposomes in two adipocytes that were previously fed on different lipid oils, i.e. on saturated stearic acid and on polyunsaturated arachidonic acid, respectively. (A) Dark-field image of a cell fed on stearic acid. (B) CARS image of the same cell at the strong -C-H resonance at 2850 cm-1. The images were recorded within 10 s, integrating over 100 laser pulse pairs. For comparison the inset shows a single shot image of the same cell, recorded within 3 ns. (C) CARS signal at the weak =C-H resonance at 3015 cm-1. (D) Dark-field image of another pre-adipocyte fed on arachidonic acid. (E) CARS signal of the same cell at 2850 cm-1. (F) CARS signal of the same cell at 3015 cm-1. The image intensities in (C) and (F) are amplified by a factor of 7 with respect to (B) and (E). The signal of the second cell at the =C-H resonance at 3015 cm-1 in (F) is about twice as intense, as the respective signal of the first cell in (C).

Tables (1)

Tables Icon

Table 1. Measured CARS signal intensities of various vegetable oils at 3015 cm-1 (normalized to the strongest peak of linseed oil). Saturated fatty acids (SFA), mono-unsaturated fatty acids (MUFA), twofold-unsaturated fatty acids (2FUFA), threefold-unsaturated fatty acids (3FUFA), corresponding to stearic acid, oleic acid, linoleic acid, alpha-linoleic acid, respectively, and calculated number of C=C double bonds per milliliter (N/ml).

Metrics