Abstract

The high-transparency of dental enamel in the near-IR (NIR) can be exploited for real-time imaging of ablation crater formation during drilling with lasers. NIR images were acquired with an InGaAs focal plane array and a NIR zoom microscope during drilling incisions in human enamel samples with a λ=9.3-µm CO2 laser operating at repetition rates of 50-300-Hz with and without a water spray. Crack formation, dehydration and thermal changes were observed during ablation. These initial images demonstrate the potential of NIR imaging to monitor laser-ablation events in real-time to provide information about the mechanism of ablation and to evaluate the potential for peripheral thermal & mechanical damage.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Bühler, P. Ngaotheppitak, and D. Fried, "Imaging of occlusal dental caries (decay) with near-IR light at 1310-nm," Opt. Express 13, 573-582 (2005).
    [CrossRef] [PubMed]
  2. R. S. Jones, G. D. Huynh, G. C. Jones, and D. Fried, "Near-IR transillumination at 1310-nm for the imaging of early dental caries," Opt. Express 11, 2259-2265 (2003).
    [CrossRef] [PubMed]
  3. D. Fried, J. D. B. Featherstone, C. L. Darling, R. S. Jones, P. Ngaotheppitak, and C. M. Buehler, Early Caries Imaging and Monitoring with Near-IR Light, Dental Clinics of North America, (W. B Saunders Company, Philadelphia, 2005) Vol. 49 .
  4. C. M. Pine, Fiber-Optic Transillumination (FOTI) in Caries Diagnosis, "Early Detection of Dental Caries" Proceedings of the 3rd Annual Indiana Conference, Indianapolis, Indiana University, 51-66 (1996).
  5. A. Schneiderman, M. Elbaum, T. Schultz, S. Keem, M. Greenebaum, and J. Driller, "Assessment of dental caries with Digital Imaging Fiber-Optic Transillumination (DIFOTI) in vitro Study," Caries Res. 31, 103-110 (1997).
    [CrossRef] [PubMed]
  6. V. V. Reddy and S. Sugandhan, "A comparison of bitewing radiography and fibreoptic illumination as adjuncts to the clinical identification of approximal caries in primary and permanent molars," Indian J. Dent. Res. 5, 59-64 (1994).
    [PubMed]
  7. S. K. Choksi, J. M. Brady, D. H. Dang, and M. S. Rao, "Detecting approximal dental caries with transillumination: a clinical evaluation," J. Am. Dent. Assoc. 125, 1098-102 (1994).
    [PubMed]
  8. E. H. Verdonschot, E. M. Bronkhorst, and A. Wenzel, "Approximal caries diagnosis using fiber-optic transillumination: a mathematical adjustment to improve validity," Community Dent. Oral Epidemiol. 19, 329-32 (1991).
    [CrossRef] [PubMed]
  9. R. Jones and D. Fried, "Attenuation of 1310-nm and 1550-nm laser light through dental enamel," J. Dent. Res. 80, 737 (2001).
  10. R. H. Stern and R. F. Sognnaes, "Laser beam effect on hard dental tissues," J. Dent. Res. 43, 873 (1964).
  11. H. A. Wigdor, J. T. Walsh, J. D. B. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, "Lasers in Dentistry," Lasers Surg. Med. 16, 103-133 (1995).
    [CrossRef] [PubMed]
  12. L. J. Miserendino and R. M. Pick, Lasers in Dentistry (Quintessence, Chicago, 1995).
  13. D. Fried, N. Ashouri, T. M. Breunig, and R. K. Shori, "Mechanism of water augmentation during IR laser irradiation of dental enamel," Lasers Surg. Med. 31, 186-193 (2002).
    [CrossRef] [PubMed]
  14. J. Pearce and S. Thomsen, in Optical-Thermal Response of Laser Irradiated Tissue, edited by A. J. Welch and M. J. C. van Gemert (Plenum, NY, 1995), p. 526-528.
  15. A. A. Dela Rosa, A. V. Sarma, C. Q. J. Le, R. S. and D. Fried, "Peripheral thermal and mechanical damage to dentin with microsecond and sub-microsecond 9.6 µm, 2.79 µm, and 0.355 µm laser pulses," Lasers Surg. Med. 35, 214-228 (2004).
    [CrossRef]
  16. D. J. Maitland and J. T. Walsh, "Thermally induced changes in tissue birefringence, laser-tissue interaction VI," SPIE 2391, 158-164, 1995.
    [CrossRef]
  17. A. Aminzadeh, S. Shahabi, and L. J. Walsh, Raman spectroscopic studies of CO2 laser-irradiated human dental enamel., Spectrochim. Acta, Part A 55A, 1303-1308 (1999).
    [CrossRef]
  18. K. Fan, P Bell, and D. Fried, "Rapid and conservative ablation and modification of enamel, dentin, and alveolar bone using a high repetition rate transverse excited atmospheric pressure CO2 laser operating at ?= 9.3 ?m," J. Biomed. Opt. 11, 064008 (2006).
    [CrossRef]
  19. D. Fried, C. M. Buhler, P. Ngaotheppitak, and C. L. Darling, "Near-IR imaging of interproximal lesions from occlusal surfaces and the influence of stains and plaque," SPIE 6137, 61370N (2006).
    [CrossRef]
  20. J. T. Walsh, T. J. Flotte, R. R. Anderson, and T. F. Deutsch, "Pulsed CO2 laser tissue ablation: Effect of tissue type and pulse duration on thermal damage," Lasers Surg. Med. 8, 108-118 (1988).
    [CrossRef] [PubMed]
  21. E. J. Burkes, J. Hoke, E. Gomes, and M. Wolbarsht, "Wet versus dry enamel ablation by Er:YAG laser, " J. Prosthet. Dent. 67, 847-51 (1992).
    [CrossRef] [PubMed]
  22. V. A. Vickers, S. L. Jacques, J. Schwartz, M. Motamedi, S. Rastegar, and J. W. Martin, "Ablation of hard dental tissues with the Er:YAG laser," Laser -Tissue Interaction III, SPIE 1646, 46-55 (1992).
  23. H. A. Wigdor, J. T. Walsh, and S. R. Visuri, "Effect of water on dental material ablation of the Er:YAG laser," Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems IV, SPIE 2128, 267-272 (1994).
  24. G. H. Dibdin, "The water in human dental enamel and its diffusional exchange measured by clearance of tritiated water from enamel slabs of varying thickness," Caries Res. 27, 81-86 (1993).
    [CrossRef] [PubMed]
  25. D. W. Holcomb and R. A. Young, "Thermal decomposition of human tooth enamel," Calcif. Tissue Int. 31, 189-201 (1980).
    [CrossRef] [PubMed]

2006 (2)

K. Fan, P Bell, and D. Fried, "Rapid and conservative ablation and modification of enamel, dentin, and alveolar bone using a high repetition rate transverse excited atmospheric pressure CO2 laser operating at ?= 9.3 ?m," J. Biomed. Opt. 11, 064008 (2006).
[CrossRef]

D. Fried, C. M. Buhler, P. Ngaotheppitak, and C. L. Darling, "Near-IR imaging of interproximal lesions from occlusal surfaces and the influence of stains and plaque," SPIE 6137, 61370N (2006).
[CrossRef]

2005 (1)

2004 (1)

A. A. Dela Rosa, A. V. Sarma, C. Q. J. Le, R. S. and D. Fried, "Peripheral thermal and mechanical damage to dentin with microsecond and sub-microsecond 9.6 µm, 2.79 µm, and 0.355 µm laser pulses," Lasers Surg. Med. 35, 214-228 (2004).
[CrossRef]

2003 (1)

2002 (1)

D. Fried, N. Ashouri, T. M. Breunig, and R. K. Shori, "Mechanism of water augmentation during IR laser irradiation of dental enamel," Lasers Surg. Med. 31, 186-193 (2002).
[CrossRef] [PubMed]

2001 (1)

R. Jones and D. Fried, "Attenuation of 1310-nm and 1550-nm laser light through dental enamel," J. Dent. Res. 80, 737 (2001).

1999 (1)

A. Aminzadeh, S. Shahabi, and L. J. Walsh, Raman spectroscopic studies of CO2 laser-irradiated human dental enamel., Spectrochim. Acta, Part A 55A, 1303-1308 (1999).
[CrossRef]

1997 (1)

A. Schneiderman, M. Elbaum, T. Schultz, S. Keem, M. Greenebaum, and J. Driller, "Assessment of dental caries with Digital Imaging Fiber-Optic Transillumination (DIFOTI) in vitro Study," Caries Res. 31, 103-110 (1997).
[CrossRef] [PubMed]

1995 (2)

H. A. Wigdor, J. T. Walsh, J. D. B. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, "Lasers in Dentistry," Lasers Surg. Med. 16, 103-133 (1995).
[CrossRef] [PubMed]

D. J. Maitland and J. T. Walsh, "Thermally induced changes in tissue birefringence, laser-tissue interaction VI," SPIE 2391, 158-164, 1995.
[CrossRef]

1994 (3)

H. A. Wigdor, J. T. Walsh, and S. R. Visuri, "Effect of water on dental material ablation of the Er:YAG laser," Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems IV, SPIE 2128, 267-272 (1994).

V. V. Reddy and S. Sugandhan, "A comparison of bitewing radiography and fibreoptic illumination as adjuncts to the clinical identification of approximal caries in primary and permanent molars," Indian J. Dent. Res. 5, 59-64 (1994).
[PubMed]

S. K. Choksi, J. M. Brady, D. H. Dang, and M. S. Rao, "Detecting approximal dental caries with transillumination: a clinical evaluation," J. Am. Dent. Assoc. 125, 1098-102 (1994).
[PubMed]

1993 (1)

G. H. Dibdin, "The water in human dental enamel and its diffusional exchange measured by clearance of tritiated water from enamel slabs of varying thickness," Caries Res. 27, 81-86 (1993).
[CrossRef] [PubMed]

1992 (2)

E. J. Burkes, J. Hoke, E. Gomes, and M. Wolbarsht, "Wet versus dry enamel ablation by Er:YAG laser, " J. Prosthet. Dent. 67, 847-51 (1992).
[CrossRef] [PubMed]

V. A. Vickers, S. L. Jacques, J. Schwartz, M. Motamedi, S. Rastegar, and J. W. Martin, "Ablation of hard dental tissues with the Er:YAG laser," Laser -Tissue Interaction III, SPIE 1646, 46-55 (1992).

1991 (1)

E. H. Verdonschot, E. M. Bronkhorst, and A. Wenzel, "Approximal caries diagnosis using fiber-optic transillumination: a mathematical adjustment to improve validity," Community Dent. Oral Epidemiol. 19, 329-32 (1991).
[CrossRef] [PubMed]

1988 (1)

J. T. Walsh, T. J. Flotte, R. R. Anderson, and T. F. Deutsch, "Pulsed CO2 laser tissue ablation: Effect of tissue type and pulse duration on thermal damage," Lasers Surg. Med. 8, 108-118 (1988).
[CrossRef] [PubMed]

1980 (1)

D. W. Holcomb and R. A. Young, "Thermal decomposition of human tooth enamel," Calcif. Tissue Int. 31, 189-201 (1980).
[CrossRef] [PubMed]

1964 (1)

R. H. Stern and R. F. Sognnaes, "Laser beam effect on hard dental tissues," J. Dent. Res. 43, 873 (1964).

Aminzadeh, A.

A. Aminzadeh, S. Shahabi, and L. J. Walsh, Raman spectroscopic studies of CO2 laser-irradiated human dental enamel., Spectrochim. Acta, Part A 55A, 1303-1308 (1999).
[CrossRef]

Anderson, R. R.

J. T. Walsh, T. J. Flotte, R. R. Anderson, and T. F. Deutsch, "Pulsed CO2 laser tissue ablation: Effect of tissue type and pulse duration on thermal damage," Lasers Surg. Med. 8, 108-118 (1988).
[CrossRef] [PubMed]

Ashouri, N.

D. Fried, N. Ashouri, T. M. Breunig, and R. K. Shori, "Mechanism of water augmentation during IR laser irradiation of dental enamel," Lasers Surg. Med. 31, 186-193 (2002).
[CrossRef] [PubMed]

Bell, P

K. Fan, P Bell, and D. Fried, "Rapid and conservative ablation and modification of enamel, dentin, and alveolar bone using a high repetition rate transverse excited atmospheric pressure CO2 laser operating at ?= 9.3 ?m," J. Biomed. Opt. 11, 064008 (2006).
[CrossRef]

Brady, J. M.

S. K. Choksi, J. M. Brady, D. H. Dang, and M. S. Rao, "Detecting approximal dental caries with transillumination: a clinical evaluation," J. Am. Dent. Assoc. 125, 1098-102 (1994).
[PubMed]

Breunig, T. M.

D. Fried, N. Ashouri, T. M. Breunig, and R. K. Shori, "Mechanism of water augmentation during IR laser irradiation of dental enamel," Lasers Surg. Med. 31, 186-193 (2002).
[CrossRef] [PubMed]

Bronkhorst, E. M.

E. H. Verdonschot, E. M. Bronkhorst, and A. Wenzel, "Approximal caries diagnosis using fiber-optic transillumination: a mathematical adjustment to improve validity," Community Dent. Oral Epidemiol. 19, 329-32 (1991).
[CrossRef] [PubMed]

Buhler, C. M.

D. Fried, C. M. Buhler, P. Ngaotheppitak, and C. L. Darling, "Near-IR imaging of interproximal lesions from occlusal surfaces and the influence of stains and plaque," SPIE 6137, 61370N (2006).
[CrossRef]

Bühler, C. M.

Burkes, E. J.

E. J. Burkes, J. Hoke, E. Gomes, and M. Wolbarsht, "Wet versus dry enamel ablation by Er:YAG laser, " J. Prosthet. Dent. 67, 847-51 (1992).
[CrossRef] [PubMed]

Choksi, S. K.

S. K. Choksi, J. M. Brady, D. H. Dang, and M. S. Rao, "Detecting approximal dental caries with transillumination: a clinical evaluation," J. Am. Dent. Assoc. 125, 1098-102 (1994).
[PubMed]

Dang, D. H.

S. K. Choksi, J. M. Brady, D. H. Dang, and M. S. Rao, "Detecting approximal dental caries with transillumination: a clinical evaluation," J. Am. Dent. Assoc. 125, 1098-102 (1994).
[PubMed]

Darling, C. L.

D. Fried, C. M. Buhler, P. Ngaotheppitak, and C. L. Darling, "Near-IR imaging of interproximal lesions from occlusal surfaces and the influence of stains and plaque," SPIE 6137, 61370N (2006).
[CrossRef]

Dela Rosa, A. A.

A. A. Dela Rosa, A. V. Sarma, C. Q. J. Le, R. S. and D. Fried, "Peripheral thermal and mechanical damage to dentin with microsecond and sub-microsecond 9.6 µm, 2.79 µm, and 0.355 µm laser pulses," Lasers Surg. Med. 35, 214-228 (2004).
[CrossRef]

Deutsch, T. F.

J. T. Walsh, T. J. Flotte, R. R. Anderson, and T. F. Deutsch, "Pulsed CO2 laser tissue ablation: Effect of tissue type and pulse duration on thermal damage," Lasers Surg. Med. 8, 108-118 (1988).
[CrossRef] [PubMed]

Dibdin, G. H.

G. H. Dibdin, "The water in human dental enamel and its diffusional exchange measured by clearance of tritiated water from enamel slabs of varying thickness," Caries Res. 27, 81-86 (1993).
[CrossRef] [PubMed]

Driller, J.

A. Schneiderman, M. Elbaum, T. Schultz, S. Keem, M. Greenebaum, and J. Driller, "Assessment of dental caries with Digital Imaging Fiber-Optic Transillumination (DIFOTI) in vitro Study," Caries Res. 31, 103-110 (1997).
[CrossRef] [PubMed]

Elbaum, M.

A. Schneiderman, M. Elbaum, T. Schultz, S. Keem, M. Greenebaum, and J. Driller, "Assessment of dental caries with Digital Imaging Fiber-Optic Transillumination (DIFOTI) in vitro Study," Caries Res. 31, 103-110 (1997).
[CrossRef] [PubMed]

Fan, K.

K. Fan, P Bell, and D. Fried, "Rapid and conservative ablation and modification of enamel, dentin, and alveolar bone using a high repetition rate transverse excited atmospheric pressure CO2 laser operating at ?= 9.3 ?m," J. Biomed. Opt. 11, 064008 (2006).
[CrossRef]

Featherstone, J. D. B.

H. A. Wigdor, J. T. Walsh, J. D. B. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, "Lasers in Dentistry," Lasers Surg. Med. 16, 103-133 (1995).
[CrossRef] [PubMed]

Flotte, T. J.

J. T. Walsh, T. J. Flotte, R. R. Anderson, and T. F. Deutsch, "Pulsed CO2 laser tissue ablation: Effect of tissue type and pulse duration on thermal damage," Lasers Surg. Med. 8, 108-118 (1988).
[CrossRef] [PubMed]

Fried, D.

K. Fan, P Bell, and D. Fried, "Rapid and conservative ablation and modification of enamel, dentin, and alveolar bone using a high repetition rate transverse excited atmospheric pressure CO2 laser operating at ?= 9.3 ?m," J. Biomed. Opt. 11, 064008 (2006).
[CrossRef]

D. Fried, C. M. Buhler, P. Ngaotheppitak, and C. L. Darling, "Near-IR imaging of interproximal lesions from occlusal surfaces and the influence of stains and plaque," SPIE 6137, 61370N (2006).
[CrossRef]

C. M. Bühler, P. Ngaotheppitak, and D. Fried, "Imaging of occlusal dental caries (decay) with near-IR light at 1310-nm," Opt. Express 13, 573-582 (2005).
[CrossRef] [PubMed]

R. S. Jones, G. D. Huynh, G. C. Jones, and D. Fried, "Near-IR transillumination at 1310-nm for the imaging of early dental caries," Opt. Express 11, 2259-2265 (2003).
[CrossRef] [PubMed]

D. Fried, N. Ashouri, T. M. Breunig, and R. K. Shori, "Mechanism of water augmentation during IR laser irradiation of dental enamel," Lasers Surg. Med. 31, 186-193 (2002).
[CrossRef] [PubMed]

R. Jones and D. Fried, "Attenuation of 1310-nm and 1550-nm laser light through dental enamel," J. Dent. Res. 80, 737 (2001).

H. A. Wigdor, J. T. Walsh, J. D. B. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, "Lasers in Dentistry," Lasers Surg. Med. 16, 103-133 (1995).
[CrossRef] [PubMed]

Gomes, E.

E. J. Burkes, J. Hoke, E. Gomes, and M. Wolbarsht, "Wet versus dry enamel ablation by Er:YAG laser, " J. Prosthet. Dent. 67, 847-51 (1992).
[CrossRef] [PubMed]

Greenebaum, M.

A. Schneiderman, M. Elbaum, T. Schultz, S. Keem, M. Greenebaum, and J. Driller, "Assessment of dental caries with Digital Imaging Fiber-Optic Transillumination (DIFOTI) in vitro Study," Caries Res. 31, 103-110 (1997).
[CrossRef] [PubMed]

Hoke, J.

E. J. Burkes, J. Hoke, E. Gomes, and M. Wolbarsht, "Wet versus dry enamel ablation by Er:YAG laser, " J. Prosthet. Dent. 67, 847-51 (1992).
[CrossRef] [PubMed]

Holcomb, D. W.

D. W. Holcomb and R. A. Young, "Thermal decomposition of human tooth enamel," Calcif. Tissue Int. 31, 189-201 (1980).
[CrossRef] [PubMed]

Huynh, G. D.

Jacques, S. L.

V. A. Vickers, S. L. Jacques, J. Schwartz, M. Motamedi, S. Rastegar, and J. W. Martin, "Ablation of hard dental tissues with the Er:YAG laser," Laser -Tissue Interaction III, SPIE 1646, 46-55 (1992).

Jones, G. C.

Jones, R.

R. Jones and D. Fried, "Attenuation of 1310-nm and 1550-nm laser light through dental enamel," J. Dent. Res. 80, 737 (2001).

Jones, R. S.

Keem, S.

A. Schneiderman, M. Elbaum, T. Schultz, S. Keem, M. Greenebaum, and J. Driller, "Assessment of dental caries with Digital Imaging Fiber-Optic Transillumination (DIFOTI) in vitro Study," Caries Res. 31, 103-110 (1997).
[CrossRef] [PubMed]

Le, C. Q. J.

A. A. Dela Rosa, A. V. Sarma, C. Q. J. Le, R. S. and D. Fried, "Peripheral thermal and mechanical damage to dentin with microsecond and sub-microsecond 9.6 µm, 2.79 µm, and 0.355 µm laser pulses," Lasers Surg. Med. 35, 214-228 (2004).
[CrossRef]

Maitland, D. J.

D. J. Maitland and J. T. Walsh, "Thermally induced changes in tissue birefringence, laser-tissue interaction VI," SPIE 2391, 158-164, 1995.
[CrossRef]

Martin, J. W.

V. A. Vickers, S. L. Jacques, J. Schwartz, M. Motamedi, S. Rastegar, and J. W. Martin, "Ablation of hard dental tissues with the Er:YAG laser," Laser -Tissue Interaction III, SPIE 1646, 46-55 (1992).

Motamedi, M.

V. A. Vickers, S. L. Jacques, J. Schwartz, M. Motamedi, S. Rastegar, and J. W. Martin, "Ablation of hard dental tissues with the Er:YAG laser," Laser -Tissue Interaction III, SPIE 1646, 46-55 (1992).

Ngaotheppitak, P.

D. Fried, C. M. Buhler, P. Ngaotheppitak, and C. L. Darling, "Near-IR imaging of interproximal lesions from occlusal surfaces and the influence of stains and plaque," SPIE 6137, 61370N (2006).
[CrossRef]

C. M. Bühler, P. Ngaotheppitak, and D. Fried, "Imaging of occlusal dental caries (decay) with near-IR light at 1310-nm," Opt. Express 13, 573-582 (2005).
[CrossRef] [PubMed]

Rao, M. S.

S. K. Choksi, J. M. Brady, D. H. Dang, and M. S. Rao, "Detecting approximal dental caries with transillumination: a clinical evaluation," J. Am. Dent. Assoc. 125, 1098-102 (1994).
[PubMed]

Rastegar, S.

V. A. Vickers, S. L. Jacques, J. Schwartz, M. Motamedi, S. Rastegar, and J. W. Martin, "Ablation of hard dental tissues with the Er:YAG laser," Laser -Tissue Interaction III, SPIE 1646, 46-55 (1992).

Reddy, V. V.

V. V. Reddy and S. Sugandhan, "A comparison of bitewing radiography and fibreoptic illumination as adjuncts to the clinical identification of approximal caries in primary and permanent molars," Indian J. Dent. Res. 5, 59-64 (1994).
[PubMed]

Sarma, A. V.

A. A. Dela Rosa, A. V. Sarma, C. Q. J. Le, R. S. and D. Fried, "Peripheral thermal and mechanical damage to dentin with microsecond and sub-microsecond 9.6 µm, 2.79 µm, and 0.355 µm laser pulses," Lasers Surg. Med. 35, 214-228 (2004).
[CrossRef]

Schneiderman, A.

A. Schneiderman, M. Elbaum, T. Schultz, S. Keem, M. Greenebaum, and J. Driller, "Assessment of dental caries with Digital Imaging Fiber-Optic Transillumination (DIFOTI) in vitro Study," Caries Res. 31, 103-110 (1997).
[CrossRef] [PubMed]

Schultz, T.

A. Schneiderman, M. Elbaum, T. Schultz, S. Keem, M. Greenebaum, and J. Driller, "Assessment of dental caries with Digital Imaging Fiber-Optic Transillumination (DIFOTI) in vitro Study," Caries Res. 31, 103-110 (1997).
[CrossRef] [PubMed]

Schwartz, J.

V. A. Vickers, S. L. Jacques, J. Schwartz, M. Motamedi, S. Rastegar, and J. W. Martin, "Ablation of hard dental tissues with the Er:YAG laser," Laser -Tissue Interaction III, SPIE 1646, 46-55 (1992).

Shahabi, S.

A. Aminzadeh, S. Shahabi, and L. J. Walsh, Raman spectroscopic studies of CO2 laser-irradiated human dental enamel., Spectrochim. Acta, Part A 55A, 1303-1308 (1999).
[CrossRef]

Shori, R. K.

D. Fried, N. Ashouri, T. M. Breunig, and R. K. Shori, "Mechanism of water augmentation during IR laser irradiation of dental enamel," Lasers Surg. Med. 31, 186-193 (2002).
[CrossRef] [PubMed]

Sognnaes, R. F.

R. H. Stern and R. F. Sognnaes, "Laser beam effect on hard dental tissues," J. Dent. Res. 43, 873 (1964).

Stern, R. H.

R. H. Stern and R. F. Sognnaes, "Laser beam effect on hard dental tissues," J. Dent. Res. 43, 873 (1964).

Sugandhan, S.

V. V. Reddy and S. Sugandhan, "A comparison of bitewing radiography and fibreoptic illumination as adjuncts to the clinical identification of approximal caries in primary and permanent molars," Indian J. Dent. Res. 5, 59-64 (1994).
[PubMed]

Verdonschot, E. H.

E. H. Verdonschot, E. M. Bronkhorst, and A. Wenzel, "Approximal caries diagnosis using fiber-optic transillumination: a mathematical adjustment to improve validity," Community Dent. Oral Epidemiol. 19, 329-32 (1991).
[CrossRef] [PubMed]

Vickers, V. A.

V. A. Vickers, S. L. Jacques, J. Schwartz, M. Motamedi, S. Rastegar, and J. W. Martin, "Ablation of hard dental tissues with the Er:YAG laser," Laser -Tissue Interaction III, SPIE 1646, 46-55 (1992).

Visuri, S. R.

H. A. Wigdor, J. T. Walsh, J. D. B. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, "Lasers in Dentistry," Lasers Surg. Med. 16, 103-133 (1995).
[CrossRef] [PubMed]

H. A. Wigdor, J. T. Walsh, and S. R. Visuri, "Effect of water on dental material ablation of the Er:YAG laser," Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems IV, SPIE 2128, 267-272 (1994).

Waldvogel, J. L.

H. A. Wigdor, J. T. Walsh, J. D. B. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, "Lasers in Dentistry," Lasers Surg. Med. 16, 103-133 (1995).
[CrossRef] [PubMed]

Walsh, J. T.

H. A. Wigdor, J. T. Walsh, J. D. B. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, "Lasers in Dentistry," Lasers Surg. Med. 16, 103-133 (1995).
[CrossRef] [PubMed]

D. J. Maitland and J. T. Walsh, "Thermally induced changes in tissue birefringence, laser-tissue interaction VI," SPIE 2391, 158-164, 1995.
[CrossRef]

H. A. Wigdor, J. T. Walsh, and S. R. Visuri, "Effect of water on dental material ablation of the Er:YAG laser," Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems IV, SPIE 2128, 267-272 (1994).

J. T. Walsh, T. J. Flotte, R. R. Anderson, and T. F. Deutsch, "Pulsed CO2 laser tissue ablation: Effect of tissue type and pulse duration on thermal damage," Lasers Surg. Med. 8, 108-118 (1988).
[CrossRef] [PubMed]

Walsh, L. J.

A. Aminzadeh, S. Shahabi, and L. J. Walsh, Raman spectroscopic studies of CO2 laser-irradiated human dental enamel., Spectrochim. Acta, Part A 55A, 1303-1308 (1999).
[CrossRef]

Wenzel, A.

E. H. Verdonschot, E. M. Bronkhorst, and A. Wenzel, "Approximal caries diagnosis using fiber-optic transillumination: a mathematical adjustment to improve validity," Community Dent. Oral Epidemiol. 19, 329-32 (1991).
[CrossRef] [PubMed]

Wigdor, H. A.

H. A. Wigdor, J. T. Walsh, J. D. B. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, "Lasers in Dentistry," Lasers Surg. Med. 16, 103-133 (1995).
[CrossRef] [PubMed]

H. A. Wigdor, J. T. Walsh, and S. R. Visuri, "Effect of water on dental material ablation of the Er:YAG laser," Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems IV, SPIE 2128, 267-272 (1994).

Wolbarsht, M.

E. J. Burkes, J. Hoke, E. Gomes, and M. Wolbarsht, "Wet versus dry enamel ablation by Er:YAG laser, " J. Prosthet. Dent. 67, 847-51 (1992).
[CrossRef] [PubMed]

Young, R. A.

D. W. Holcomb and R. A. Young, "Thermal decomposition of human tooth enamel," Calcif. Tissue Int. 31, 189-201 (1980).
[CrossRef] [PubMed]

Calcif. Tissue Int. (1)

D. W. Holcomb and R. A. Young, "Thermal decomposition of human tooth enamel," Calcif. Tissue Int. 31, 189-201 (1980).
[CrossRef] [PubMed]

Caries Res. (2)

G. H. Dibdin, "The water in human dental enamel and its diffusional exchange measured by clearance of tritiated water from enamel slabs of varying thickness," Caries Res. 27, 81-86 (1993).
[CrossRef] [PubMed]

A. Schneiderman, M. Elbaum, T. Schultz, S. Keem, M. Greenebaum, and J. Driller, "Assessment of dental caries with Digital Imaging Fiber-Optic Transillumination (DIFOTI) in vitro Study," Caries Res. 31, 103-110 (1997).
[CrossRef] [PubMed]

Community Dent. Oral Epidemiol. (1)

E. H. Verdonschot, E. M. Bronkhorst, and A. Wenzel, "Approximal caries diagnosis using fiber-optic transillumination: a mathematical adjustment to improve validity," Community Dent. Oral Epidemiol. 19, 329-32 (1991).
[CrossRef] [PubMed]

Indian J. Dent. Res. (1)

V. V. Reddy and S. Sugandhan, "A comparison of bitewing radiography and fibreoptic illumination as adjuncts to the clinical identification of approximal caries in primary and permanent molars," Indian J. Dent. Res. 5, 59-64 (1994).
[PubMed]

J Dent Res (1)

R. Jones and D. Fried, "Attenuation of 1310-nm and 1550-nm laser light through dental enamel," J. Dent. Res. 80, 737 (2001).

J. Am. Dent. Assoc. (1)

S. K. Choksi, J. M. Brady, D. H. Dang, and M. S. Rao, "Detecting approximal dental caries with transillumination: a clinical evaluation," J. Am. Dent. Assoc. 125, 1098-102 (1994).
[PubMed]

J. Biomed. Opt. (1)

K. Fan, P Bell, and D. Fried, "Rapid and conservative ablation and modification of enamel, dentin, and alveolar bone using a high repetition rate transverse excited atmospheric pressure CO2 laser operating at ?= 9.3 ?m," J. Biomed. Opt. 11, 064008 (2006).
[CrossRef]

J. Dent. Res. (1)

R. H. Stern and R. F. Sognnaes, "Laser beam effect on hard dental tissues," J. Dent. Res. 43, 873 (1964).

J. Prosthet. Dent. (1)

E. J. Burkes, J. Hoke, E. Gomes, and M. Wolbarsht, "Wet versus dry enamel ablation by Er:YAG laser, " J. Prosthet. Dent. 67, 847-51 (1992).
[CrossRef] [PubMed]

Lasers Surg. Med. (4)

J. T. Walsh, T. J. Flotte, R. R. Anderson, and T. F. Deutsch, "Pulsed CO2 laser tissue ablation: Effect of tissue type and pulse duration on thermal damage," Lasers Surg. Med. 8, 108-118 (1988).
[CrossRef] [PubMed]

H. A. Wigdor, J. T. Walsh, J. D. B. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, "Lasers in Dentistry," Lasers Surg. Med. 16, 103-133 (1995).
[CrossRef] [PubMed]

A. A. Dela Rosa, A. V. Sarma, C. Q. J. Le, R. S. and D. Fried, "Peripheral thermal and mechanical damage to dentin with microsecond and sub-microsecond 9.6 µm, 2.79 µm, and 0.355 µm laser pulses," Lasers Surg. Med. 35, 214-228 (2004).
[CrossRef]

D. Fried, N. Ashouri, T. M. Breunig, and R. K. Shori, "Mechanism of water augmentation during IR laser irradiation of dental enamel," Lasers Surg. Med. 31, 186-193 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Spectrochim. Acta, Part A (1)

A. Aminzadeh, S. Shahabi, and L. J. Walsh, Raman spectroscopic studies of CO2 laser-irradiated human dental enamel., Spectrochim. Acta, Part A 55A, 1303-1308 (1999).
[CrossRef]

SPIE (4)

V. A. Vickers, S. L. Jacques, J. Schwartz, M. Motamedi, S. Rastegar, and J. W. Martin, "Ablation of hard dental tissues with the Er:YAG laser," Laser -Tissue Interaction III, SPIE 1646, 46-55 (1992).

H. A. Wigdor, J. T. Walsh, and S. R. Visuri, "Effect of water on dental material ablation of the Er:YAG laser," Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems IV, SPIE 2128, 267-272 (1994).

D. J. Maitland and J. T. Walsh, "Thermally induced changes in tissue birefringence, laser-tissue interaction VI," SPIE 2391, 158-164, 1995.
[CrossRef]

D. Fried, C. M. Buhler, P. Ngaotheppitak, and C. L. Darling, "Near-IR imaging of interproximal lesions from occlusal surfaces and the influence of stains and plaque," SPIE 6137, 61370N (2006).
[CrossRef]

Other (4)

J. Pearce and S. Thomsen, in Optical-Thermal Response of Laser Irradiated Tissue, edited by A. J. Welch and M. J. C. van Gemert (Plenum, NY, 1995), p. 526-528.

D. Fried, J. D. B. Featherstone, C. L. Darling, R. S. Jones, P. Ngaotheppitak, and C. M. Buehler, Early Caries Imaging and Monitoring with Near-IR Light, Dental Clinics of North America, (W. B Saunders Company, Philadelphia, 2005) Vol. 49 .

C. M. Pine, Fiber-Optic Transillumination (FOTI) in Caries Diagnosis, "Early Detection of Dental Caries" Proceedings of the 3rd Annual Indiana Conference, Indianapolis, Indiana University, 51-66 (1996).

L. J. Miserendino and R. M. Pick, Lasers in Dentistry (Quintessence, Chicago, 1995).

Supplementary Material (7)

» Media 1: MOV (1457 KB)     
» Media 2: MOV (9714 KB)     
» Media 3: MOV (5367 KB)     
» Media 4: MOV (3654 KB)     
» Media 5: MOV (2717 KB)     
» Media 6: MOV (2349 KB)     
» Media 7: MOV (1429 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig 1.
Fig 1.

(1.4MB) Movie of a NIR image of a 3 mm rotating tooth section showing the high-transparency of dental enamel. [Media 1]

Fig. 2.
Fig. 2.

Imaging Setup on left and schematic diagram on right. (A) InGaAs FPA with zoom lens, (B) water spray nozzle, (C) laser hand-piece, (D) fiber-optic illuminator, (E) sample holder and tooth section.

Fig. 3.
Fig. 3.

(2.7 MB) Movie (A) NIR image of side of tooth section before ablation. (B) NIR image of side of tooth section with CO2 laser irradiation plume. (C) NIR image of side of tooth section with an ablation craters produced at a repetition rate of 20 Hz without a water spray. The entrance crater diameter is approx. 300 µm and the depth is approx. 1.5 mm. (9.5 MB version). [Media 2][Media 3]

Fig. 4.
Fig. 4.

(2.3 MB) Movie (A) NIR image of the side of a 3 mm thick tooth section as it is being drilled by the CO2 laser with a repetition rate of 30 Hz, a fluence of 40 J/cm2 without a water spray. (B) Final frame of a NIR image extracted from the video showing that there are no optical changes in the sound enamel peripheral to the incision. (C) Reflected light image of the approx. 1 mm incision length and approx. 2 mm depth after ablation showing no thermal damage. (5.2MB version). [Media 4][Media 5]

Fig. 5.
Fig. 5.

(1.4 MB) Movie (A) NIR image showing the high initial transparency of the enamel through a 3 mm thick tooth section prior to CO2 laser irradiation. (B) NIR image of crack extracted from the video during the first second of irradiation with non-ablative CO2 laser pulses at a repetition rate of 100 Hz. (C) Thermal emission outlined by yellow lines is visible propagating through the tooth enamel. (D) NIR image after passage of that thermal emission, the enamel becomes opaque due to tissue dehydration or permanent changes to the protein, lipid or mineral. (E) NIR image after tooth section was left for 24 hours in deionized water showing rehydration of most opaque areas. (F) Reflected light images of tooth showing cracks propagating outward in a radial pattern from the irradiated area. (3.6 MB version). [Media 6][Media 7]

Metrics