Abstract

We report on visibly white supercontinuum generation in photonic crystal fibers using a sub ns pump source at 1064nm. The spectra extend from below 400nm to 2450nm, some 50nm further into the blue than previously reported spectra. The extra bandwidth which is achieved by a simple modification to the fiber structure gives a higher apparent color temperature and a truly “white” visual appearance. The mechanism for the generation of the deeper blue to ultraviolet frequencies is outlined and our modified fiber is compared with fibers which have been conventionally used for supercontinuum generation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000)
    [CrossRef]
  2. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres," Opt. Express 12, 299-309 (2004)
    [CrossRef] [PubMed]
  3. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006)
    [CrossRef]
  4. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003)
    [CrossRef] [PubMed]
  5. P. St. J. Russell, "Photonic crystal fibers" Science 299, 358-362 (2003)
    [CrossRef] [PubMed]
  6. T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997)
    [CrossRef] [PubMed]
  7. Crystal Fibre A/S: http://www.crystal-fibre.com
  8. Fianium: http://www.fianium.com
  9. Koheras: http://www.koheras.com
  10. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006)
    [CrossRef] [PubMed]
  11. C. Xiong, A. Witkowska, S. G. Leon-Saval, T. A. Birks, and W. J. Wadsworth, "Enhanced visible continuum generation from a microchip 1064nm laser," Opt. Express 14, 6188-6193 (2006)
    [CrossRef] [PubMed]
  12. C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, "Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber," Opt. Lett. 32, 2173-2175 (2007)
    [CrossRef] [PubMed]
  13. G. P. Agrawal, "Nonlinear Fiber Optics," 4th ed., (Academic Press, 2006)
  14. A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, "Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum," Opt. Express 14, 9854-9863 (2006).
    [CrossRef] [PubMed]
  15. A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nat. Photonics 1, 653 - 657 (2007).
    [CrossRef]
  16. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitman, "Analysis of OH absorption bands in synthetic silica," J. Non-Cryst. Solids 203, 19-26 (1996)
    [CrossRef]
  17. K. Saitoh and M. Koshiba, "Empirical relations for simple design of photonic crystal fibers," Opt. Express 13, 267-274 (2005)
    [CrossRef] [PubMed]

2007 (2)

2006 (4)

2005 (1)

2004 (1)

2003 (2)

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003)
[CrossRef] [PubMed]

P. St. J. Russell, "Photonic crystal fibers" Science 299, 358-362 (2003)
[CrossRef] [PubMed]

2000 (1)

1997 (1)

1996 (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitman, "Analysis of OH absorption bands in synthetic silica," J. Non-Cryst. Solids 203, 19-26 (1996)
[CrossRef]

Barthélémy, A.

Biancalana, F.

Birks, T.

Birks, T. A.

Blandin, P.

Couderc, V.

Druon, F.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006)
[CrossRef]

Fabian, H.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitman, "Analysis of OH absorption bands in synthetic silica," J. Non-Cryst. Solids 203, 19-26 (1996)
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006)
[CrossRef]

George, A. K.

Georges, P.

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nat. Photonics 1, 653 - 657 (2007).
[CrossRef]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, "Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum," Opt. Express 14, 9854-9863 (2006).
[CrossRef] [PubMed]

Grzesik, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitman, "Analysis of OH absorption bands in synthetic silica," J. Non-Cryst. Solids 203, 19-26 (1996)
[CrossRef]

Haken, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitman, "Analysis of OH absorption bands in synthetic silica," J. Non-Cryst. Solids 203, 19-26 (1996)
[CrossRef]

Hanna, M.

Heitman, W.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitman, "Analysis of OH absorption bands in synthetic silica," J. Non-Cryst. Solids 203, 19-26 (1996)
[CrossRef]

Humbach, O.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitman, "Analysis of OH absorption bands in synthetic silica," J. Non-Cryst. Solids 203, 19-26 (1996)
[CrossRef]

Joly, N.

Knight, J.

Knight, J. C.

Koshiba, M.

Kudlinski, A.

Lacroix, S.

Leon-Saval, S. G.

Leproux, P.

Lesvigne, C.

Popov, S. V.

Ranka, J. K.

Rulkov, A. B.

Russell, P.

Russell, P. S. J.

Russell, P. St. J.

P. St. J. Russell, "Photonic crystal fibers" Science 299, 358-362 (2003)
[CrossRef] [PubMed]

Saitoh, K.

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nat. Photonics 1, 653 - 657 (2007).
[CrossRef]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, "Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum," Opt. Express 14, 9854-9863 (2006).
[CrossRef] [PubMed]

Stentz, A. J.

Stone, J. M.

Taylor, J. R.

Tonello, A.

Travers, J. C.

Wadsworth, W.

Wadsworth, W. J.

Windeler, R. S.

Witkowska, A.

Xiong, C.

J. Non-Cryst. Solids (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitman, "Analysis of OH absorption bands in synthetic silica," J. Non-Cryst. Solids 203, 19-26 (1996)
[CrossRef]

Nature (1)

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003)
[CrossRef] [PubMed]

Nature Photonics (1)

A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nat. Photonics 1, 653 - 657 (2007).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006)
[CrossRef]

Science (1)

P. St. J. Russell, "Photonic crystal fibers" Science 299, 358-362 (2003)
[CrossRef] [PubMed]

Other (4)

Crystal Fibre A/S: http://www.crystal-fibre.com

Fianium: http://www.fianium.com

Koheras: http://www.koheras.com

G. P. Agrawal, "Nonlinear Fiber Optics," 4th ed., (Academic Press, 2006)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Modeled group index curves as a function of wavelength, for silica (green), an endlessly single mode fiber typically used for supercontinuum generation (blue) and a 5 micron strand of silica in air (black).

Fig. 2.
Fig. 2.

Scanning electron micrographs of the compared fibers, a) is a conventional endlessly single mode fiber and b) a large core high-delta fiber used for enhanced visible to UV continuum generation. c) shows the dispersed output of generated supercontinua from the two fibers, the ESM fiber spectrum is at the top of the picture and the high-delta spectrum at the bottom. Identical fiber lengths, pump sources and powers were used in the two cases.

Fig. 3.
Fig. 3.

A full spectrum from the high-delta fiber recorded using an optical spectrum analyzer (blue) and an Ocean Optics near infrared spectrometer (red).

Fig. 4.
Fig. 4.

Short and long wavelength supercontinuum edges plotted on modeled group index curves for both the ESM fiber (diamonds) and the high-Δ fiber (crosses) as a function of average output power. The insert shows the blue edge of the supercontinua at ~12mW for both fibers.

Fig. 5.
Fig. 5.

a) Shows the modeled group index curves for a series of progressively smaller fibers, Λ=3.71, 3.55 and 3.38 microns shown in green, red and blue respectively, with the same d/Λ ratio, b) shows the measured spectra for the same fiber series, the coloring is the same as in a). The shift of the short wavelength edge towards the ultraviolet can clearly be seen. c) Shows the short wavelength edge of the same fiber series pumped by a commercial high power picosecond source from Fianium (Femtopower 1060-1µJ-pp). The spectra in c) have been normalized: however those in b) have been left un-normalized in order to show the observed 5dB decrease between successively smaller fibers.

Metrics