Abstract

A tunable-focus liquid microlens array based on dielectrophoretic effect was demonstrated. In a lens cell, two immiscible dielectric liquids but with different dielectric constants are sandwiched between electrodes. One electrode has a holed pattern while the other electrode is continuous. The applied voltage generates an inhomogeneous electric field near the hole regions. Owing to such an electric field, the generated dielectric force would separate the low dielectric liquid into many pieces and each piece is pushed to its neighboring hole. After balance, the droplet array is formed in the contracting state surrounded by the high dielectric constant liquid. Each droplet exhibits a lens character. When the voltage is removed, the droplets relax slightly but still keep a certain contact angle. Reactivating the cell will again enforce the droplets to reshape from relaxing to contracting states and, therefore, changing the focal length. Such a lens cell can be fabricated easily and its response time is reasonably fast. Its potential applications in image processing and zoom lens are emphasized.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Nose and S. Sato, "Liquid-crystal microlens with a non-uniform electric field," Liq. Cryst. 5, 1425-1433 (1989).
    [CrossRef]
  2. N. A. Riza and M. C. Dejule, "Three-terminal adaptive nematic liquid crystal lens device," Opt. Lett. 19, 1013-1015 (1994).
    [CrossRef] [PubMed]
  3. H. Ren, Y. H. Fan, and S. T. Wu, "Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals," Appl. Phys. Lett. 83, 1515-1517 (2003).
    [CrossRef]
  4. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
    [CrossRef]
  5. G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, "Large-aperture switchable thin diffractive lens with interleaved electrode patterns," Appl. Phys. Lett. 89, 141120 (2006).
    [CrossRef]
  6. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, "Tunable liquid-filled microlens array integrated with microfluidic network," Opt. Express 11, 2370-2378 (2003).
    [CrossRef] [PubMed]
  7. K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, "Tunable microfluidic optical devices with an integrated microlens array," J. Micromech. Microeng. 16, 1660-1666 (2006).
    [CrossRef]
  8. J. Chen, W. Wang, J. Fang, and K. Varahramtan, "Variable-focusing microlens with microfluidic chip," J. Micromech. Microeng. 14, 675-680 (2004).
    [CrossRef]
  9. H. Ren and S. T. Wu, "Variable-focus liquid lens," Opt. Express 15, 5931-5936 (2007).
    [CrossRef] [PubMed]
  10. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, "Adaptive liquid microlenses activated by stimuli-responsive hydrogels," Nature 442, 551-554 (2006).
    [CrossRef] [PubMed]
  11. T. Krupenkin, S. Yang, and P. Mach, "Tunable liquid microlens," Appl. Phys. Lett. 82, 316-318 (2003).
    [CrossRef]
  12. S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
    [CrossRef]
  13. M. Vallet, B. Berge, and L. Vovelle, "Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films," Polymer 37, 2465-2470 (1996).
    [CrossRef]
  14. C. C. Cheng and J. A. Yeh, "Dielectrically actuated liquid lens," Opt. Express 15, 7140-7145 (2007).
    [CrossRef] [PubMed]
  15. S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. 43, 7634-7638 (2004).
    [CrossRef]
  16. H. Ren, Y. H. Lin, and S. T. Wu, "Adaptive lens using liquid crystal concentration redistribution," Appl. Phys. Lett. 88, 191116 (2006).
    [CrossRef]
  17. C. C. Cheng, C. A. Chang, and J. A. Yeh, "Variable focus dielectric liquid lens," Opt. Express 14, 4101-4106 (2006).
    [CrossRef] [PubMed]
  18. Http://web.mit.edu/6.013_book/www/chapter11/11.9.html
  19. R. A. Hayes and B. J. Feenstra, "Video-speed electronic paper based on electrowetting," Nature 425, 383-385 (2003).
    [CrossRef] [PubMed]
  20. S. Vafaei and M. Z. Podowski, "Theoretical analysis on the effect of liquid droplet geometry on contact angle," Nucl. Eng. Des. 235, 1293-1301 (2005).
    [CrossRef]

2007

2006

H. Ren, Y. H. Lin, and S. T. Wu, "Adaptive lens using liquid crystal concentration redistribution," Appl. Phys. Lett. 88, 191116 (2006).
[CrossRef]

C. C. Cheng, C. A. Chang, and J. A. Yeh, "Variable focus dielectric liquid lens," Opt. Express 14, 4101-4106 (2006).
[CrossRef] [PubMed]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, "Adaptive liquid microlenses activated by stimuli-responsive hydrogels," Nature 442, 551-554 (2006).
[CrossRef] [PubMed]

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, "Large-aperture switchable thin diffractive lens with interleaved electrode patterns," Appl. Phys. Lett. 89, 141120 (2006).
[CrossRef]

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, "Tunable microfluidic optical devices with an integrated microlens array," J. Micromech. Microeng. 16, 1660-1666 (2006).
[CrossRef]

2005

S. Vafaei and M. Z. Podowski, "Theoretical analysis on the effect of liquid droplet geometry on contact angle," Nucl. Eng. Des. 235, 1293-1301 (2005).
[CrossRef]

2004

J. Chen, W. Wang, J. Fang, and K. Varahramtan, "Variable-focusing microlens with microfluidic chip," J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
[CrossRef]

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. 43, 7634-7638 (2004).
[CrossRef]

2003

R. A. Hayes and B. J. Feenstra, "Video-speed electronic paper based on electrowetting," Nature 425, 383-385 (2003).
[CrossRef] [PubMed]

T. Krupenkin, S. Yang, and P. Mach, "Tunable liquid microlens," Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, "Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals," Appl. Phys. Lett. 83, 1515-1517 (2003).
[CrossRef]

N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, "Tunable liquid-filled microlens array integrated with microfluidic network," Opt. Express 11, 2370-2378 (2003).
[CrossRef] [PubMed]

1996

M. Vallet, B. Berge, and L. Vovelle, "Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films," Polymer 37, 2465-2470 (1996).
[CrossRef]

1994

1989

T. Nose and S. Sato, "Liquid-crystal microlens with a non-uniform electric field," Liq. Cryst. 5, 1425-1433 (1989).
[CrossRef]

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, "Adaptive liquid microlenses activated by stimuli-responsive hydrogels," Nature 442, 551-554 (2006).
[CrossRef] [PubMed]

Aizenberg, J.

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, "Tunable microfluidic optical devices with an integrated microlens array," J. Micromech. Microeng. 16, 1660-1666 (2006).
[CrossRef]

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, "Adaptive liquid microlenses activated by stimuli-responsive hydrogels," Nature 442, 551-554 (2006).
[CrossRef] [PubMed]

Berge, B.

M. Vallet, B. Berge, and L. Vovelle, "Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films," Polymer 37, 2465-2470 (1996).
[CrossRef]

Chandra, D.

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, "Tunable microfluidic optical devices with an integrated microlens array," J. Micromech. Microeng. 16, 1660-1666 (2006).
[CrossRef]

Chang, C. A.

Chen, J.

J. Chen, W. Wang, J. Fang, and K. Varahramtan, "Variable-focusing microlens with microfluidic chip," J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

Cheng, C. C.

Chronis, N.

Dejule, M. C.

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, "Adaptive liquid microlenses activated by stimuli-responsive hydrogels," Nature 442, 551-554 (2006).
[CrossRef] [PubMed]

Fan, Y. H.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, "Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals," Appl. Phys. Lett. 83, 1515-1517 (2003).
[CrossRef]

Fang, J.

J. Chen, W. Wang, J. Fang, and K. Varahramtan, "Variable-focusing microlens with microfluidic chip," J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

Feenstra, B. J.

R. A. Hayes and B. J. Feenstra, "Video-speed electronic paper based on electrowetting," Nature 425, 383-385 (2003).
[CrossRef] [PubMed]

Gauza, S.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. 43, 7634-7638 (2004).
[CrossRef]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
[CrossRef]

Giridhar, M. S.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, "Large-aperture switchable thin diffractive lens with interleaved electrode patterns," Appl. Phys. Lett. 89, 141120 (2006).
[CrossRef]

Haddock, J. N.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, "Large-aperture switchable thin diffractive lens with interleaved electrode patterns," Appl. Phys. Lett. 89, 141120 (2006).
[CrossRef]

Hayes, R. A.

R. A. Hayes and B. J. Feenstra, "Video-speed electronic paper based on electrowetting," Nature 425, 383-385 (2003).
[CrossRef] [PubMed]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
[CrossRef]

Hong, K. S.

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, "Tunable microfluidic optical devices with an integrated microlens array," J. Micromech. Microeng. 16, 1660-1666 (2006).
[CrossRef]

Hsu, C. S.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. 43, 7634-7638 (2004).
[CrossRef]

Janarthanan, N.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. 43, 7634-7638 (2004).
[CrossRef]

Jeong, K. H.

Jiang, H.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, "Adaptive liquid microlenses activated by stimuli-responsive hydrogels," Nature 442, 551-554 (2006).
[CrossRef] [PubMed]

Kippelen, B.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, "Large-aperture switchable thin diffractive lens with interleaved electrode patterns," Appl. Phys. Lett. 89, 141120 (2006).
[CrossRef]

Krupenkin, T.

T. Krupenkin, S. Yang, and P. Mach, "Tunable liquid microlens," Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
[CrossRef]

Lee, L. P.

Li, G.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, "Large-aperture switchable thin diffractive lens with interleaved electrode patterns," Appl. Phys. Lett. 89, 141120 (2006).
[CrossRef]

Lin, Y. H.

H. Ren, Y. H. Lin, and S. T. Wu, "Adaptive lens using liquid crystal concentration redistribution," Appl. Phys. Lett. 88, 191116 (2006).
[CrossRef]

Liu, G. L.

Mach, P.

T. Krupenkin, S. Yang, and P. Mach, "Tunable liquid microlens," Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

Mathine, D. L.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, "Large-aperture switchable thin diffractive lens with interleaved electrode patterns," Appl. Phys. Lett. 89, 141120 (2006).
[CrossRef]

Meredith, G.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, "Large-aperture switchable thin diffractive lens with interleaved electrode patterns," Appl. Phys. Lett. 89, 141120 (2006).
[CrossRef]

Nose, T.

T. Nose and S. Sato, "Liquid-crystal microlens with a non-uniform electric field," Liq. Cryst. 5, 1425-1433 (1989).
[CrossRef]

Peyghambarian, N.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, "Large-aperture switchable thin diffractive lens with interleaved electrode patterns," Appl. Phys. Lett. 89, 141120 (2006).
[CrossRef]

Podowski, M. Z.

S. Vafaei and M. Z. Podowski, "Theoretical analysis on the effect of liquid droplet geometry on contact angle," Nucl. Eng. Des. 235, 1293-1301 (2005).
[CrossRef]

Ren, H.

H. Ren and S. T. Wu, "Variable-focus liquid lens," Opt. Express 15, 5931-5936 (2007).
[CrossRef] [PubMed]

H. Ren, Y. H. Lin, and S. T. Wu, "Adaptive lens using liquid crystal concentration redistribution," Appl. Phys. Lett. 88, 191116 (2006).
[CrossRef]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, "Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals," Appl. Phys. Lett. 83, 1515-1517 (2003).
[CrossRef]

Riza, N. A.

Sato, S.

T. Nose and S. Sato, "Liquid-crystal microlens with a non-uniform electric field," Liq. Cryst. 5, 1425-1433 (1989).
[CrossRef]

Sharonov, A.

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, "Tunable microfluidic optical devices with an integrated microlens array," J. Micromech. Microeng. 16, 1660-1666 (2006).
[CrossRef]

Vafaei, S.

S. Vafaei and M. Z. Podowski, "Theoretical analysis on the effect of liquid droplet geometry on contact angle," Nucl. Eng. Des. 235, 1293-1301 (2005).
[CrossRef]

Vallet, M.

M. Vallet, B. Berge, and L. Vovelle, "Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films," Polymer 37, 2465-2470 (1996).
[CrossRef]

Valley, P.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, "Large-aperture switchable thin diffractive lens with interleaved electrode patterns," Appl. Phys. Lett. 89, 141120 (2006).
[CrossRef]

Varahramtan, K.

J. Chen, W. Wang, J. Fang, and K. Varahramtan, "Variable-focusing microlens with microfluidic chip," J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

Vovelle, L.

M. Vallet, B. Berge, and L. Vovelle, "Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films," Polymer 37, 2465-2470 (1996).
[CrossRef]

Wang, J.

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, "Tunable microfluidic optical devices with an integrated microlens array," J. Micromech. Microeng. 16, 1660-1666 (2006).
[CrossRef]

Wang, W.

J. Chen, W. Wang, J. Fang, and K. Varahramtan, "Variable-focusing microlens with microfluidic chip," J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

Wen, C. H.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. 43, 7634-7638 (2004).
[CrossRef]

Wu, S. T.

H. Ren and S. T. Wu, "Variable-focus liquid lens," Opt. Express 15, 5931-5936 (2007).
[CrossRef] [PubMed]

H. Ren, Y. H. Lin, and S. T. Wu, "Adaptive lens using liquid crystal concentration redistribution," Appl. Phys. Lett. 88, 191116 (2006).
[CrossRef]

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. 43, 7634-7638 (2004).
[CrossRef]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, "Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals," Appl. Phys. Lett. 83, 1515-1517 (2003).
[CrossRef]

Yang, S.

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, "Tunable microfluidic optical devices with an integrated microlens array," J. Micromech. Microeng. 16, 1660-1666 (2006).
[CrossRef]

T. Krupenkin, S. Yang, and P. Mach, "Tunable liquid microlens," Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

Yeh, J. A.

Appl. Phys. Lett.

H. Ren, Y. H. Fan, and S. T. Wu, "Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals," Appl. Phys. Lett. 83, 1515-1517 (2003).
[CrossRef]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
[CrossRef]

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, "Large-aperture switchable thin diffractive lens with interleaved electrode patterns," Appl. Phys. Lett. 89, 141120 (2006).
[CrossRef]

T. Krupenkin, S. Yang, and P. Mach, "Tunable liquid microlens," Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
[CrossRef]

H. Ren, Y. H. Lin, and S. T. Wu, "Adaptive lens using liquid crystal concentration redistribution," Appl. Phys. Lett. 88, 191116 (2006).
[CrossRef]

J. Micromech. Microeng.

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, "Tunable microfluidic optical devices with an integrated microlens array," J. Micromech. Microeng. 16, 1660-1666 (2006).
[CrossRef]

J. Chen, W. Wang, J. Fang, and K. Varahramtan, "Variable-focusing microlens with microfluidic chip," J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

Jpn. J. Appl. Phys.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. 43, 7634-7638 (2004).
[CrossRef]

Liq. Cryst.

T. Nose and S. Sato, "Liquid-crystal microlens with a non-uniform electric field," Liq. Cryst. 5, 1425-1433 (1989).
[CrossRef]

Nature

R. A. Hayes and B. J. Feenstra, "Video-speed electronic paper based on electrowetting," Nature 425, 383-385 (2003).
[CrossRef] [PubMed]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, "Adaptive liquid microlenses activated by stimuli-responsive hydrogels," Nature 442, 551-554 (2006).
[CrossRef] [PubMed]

Nuclear Engineering and Design

S. Vafaei and M. Z. Podowski, "Theoretical analysis on the effect of liquid droplet geometry on contact angle," Nucl. Eng. Des. 235, 1293-1301 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Polymer

M. Vallet, B. Berge, and L. Vovelle, "Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films," Polymer 37, 2465-2470 (1996).
[CrossRef]

Other

Http://web.mit.edu/6.013_book/www/chapter11/11.9.html

Supplementary Material (1)

» Media 1: MPG (756 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig.1.
Fig.1.

Side view of the droplet array forming processes. (a) two liquid layers, (b) droplet forming process, (c) stable state with a voltage, and (d) in a relaxed state without voltage.

Fig. 2.
Fig. 2.

The voltage dependent focal spot of one pixel lens. (a) 0 V, (b) 60 V, and (c) 88 V.

Fig. 3.
Fig. 3.

Imaging properties of the microlens array at (a) V=0, (b) V=60 V, and (c) refocused state.

Fig. 4.
Fig. 4.

Voltage dependent focal length and the contact angle.

Fig. 5.
Fig. 5.

2×3 mircolens array driven from a defocused state to a focused state. (755KB) [Media 1]

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F = ε 0 2 [ ( ε 1 ε 2 ) E E ] 1 2 E E ( ε 1 ε 2 )
γ w , d > γ o , w + γ o , d ,
f 3 = 3 V π ( 1 cos θ ) ( 2 cos 2 θ cos θ ) ( n 1 n 2 ) 3 ,

Metrics