Abstract

We describe a polarization rotator based on an off-axis double-core structure consisting of a silicon wire waveguide and a silicon-oxinitride waveguide. The rotator can be made by planar fabrication technology and do not require complex processes, such as three-dimensional structure formation. A rotator with 35-µm long provides the polarization rotation angle of 72 degrees and the polarization extinction ratio of 11 dB with the excess loss of about 1 dB. Our polarization rotator represents a significant step towards accomplishing an optical circuit with polarization diversity based on silicon wire waveguides.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon micro-fabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
    [CrossRef]
  2. K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron.E 87-C, 351-358 (2004).
  3. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
    [CrossRef]
  4. K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges," Opt. Lett. 28, 1663-1664 (2003)
    [CrossRef] [PubMed]
  5. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
    [CrossRef] [PubMed]
  6. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguides," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
    [CrossRef]
  7. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, "Ultrasmall polarization splitter based on silicon wire waveguides," Opt. Express,  14, 12401-12408 (2006).
    [CrossRef] [PubMed]
  8. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compacr two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
    [CrossRef]
  9. M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, "Towards integrated polarization diversity: design, fabrication, and characterization of integrated polarization splitters and rotators," OFC2005 Technical Digest PDP11 (2005).
  10. M. R. Watts, H. A. Haus, and E. P. Ippen, "Integrated mode-evolution-based polarization splitter," Opt. Lett. 30, 967-969 (2005).
    [CrossRef] [PubMed]
  11. M. R. Watts, H. A. Haus, and E. P. Ippen, "Integrated mode-evolution-based polarization rotators," Opt. Lett. 30, 138-140 (2005).
    [CrossRef] [PubMed]
  12. T. Barwicz, M. R. Watts, M. A. Popovi’c, P. T. Rakich, L. Socci, F. X. K¨artner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nat. Photonics 1, 57-60 (2006).
  13. J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, "A short polarization splitter without metal overlays on InGaAsP-InP," IEEE Photon. Technol. Lett. 9, 209-211 (1997).
    [CrossRef]
  14. I. Kiyat, A. Aydinli, and N. Dagli, "A compact silicon-on-insulator polarization splitter," IEEE Photon. Technol. Lett. 17, 100-102 (2005).
    [CrossRef]
  15. "FIMMWAVE Version 4.06," Photon Design, Dec. 2002.
  16. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 ?m square Si wire waveguides to singlemode fibers," Electron. Lett. 38, 1669-1670 (2002).
    [CrossRef]

2006 (3)

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguides," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, "Ultrasmall polarization splitter based on silicon wire waveguides," Opt. Express,  14, 12401-12408 (2006).
[CrossRef] [PubMed]

T. Barwicz, M. R. Watts, M. A. Popovi’c, P. T. Rakich, L. Socci, F. X. K¨artner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nat. Photonics 1, 57-60 (2006).

2005 (5)

I. Kiyat, A. Aydinli, and N. Dagli, "A compact silicon-on-insulator polarization splitter," IEEE Photon. Technol. Lett. 17, 100-102 (2005).
[CrossRef]

M. R. Watts, H. A. Haus, and E. P. Ippen, "Integrated mode-evolution-based polarization splitter," Opt. Lett. 30, 967-969 (2005).
[CrossRef] [PubMed]

M. R. Watts, H. A. Haus, and E. P. Ippen, "Integrated mode-evolution-based polarization rotators," Opt. Lett. 30, 138-140 (2005).
[CrossRef] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon micro-fabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

2004 (1)

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron.E 87-C, 351-358 (2004).

2003 (2)

K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges," Opt. Lett. 28, 1663-1664 (2003)
[CrossRef] [PubMed]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compacr two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

2002 (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 ?m square Si wire waveguides to singlemode fibers," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

2000 (1)

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
[CrossRef]

1997 (1)

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, "A short polarization splitter without metal overlays on InGaAsP-InP," IEEE Photon. Technol. Lett. 9, 209-211 (1997).
[CrossRef]

Agarwal, A.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
[CrossRef]

Aydinli, A.

I. Kiyat, A. Aydinli, and N. Dagli, "A compact silicon-on-insulator polarization splitter," IEEE Photon. Technol. Lett. 17, 100-102 (2005).
[CrossRef]

Baets, R.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compacr two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popovi’c, P. T. Rakich, L. Socci, F. X. K¨artner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nat. Photonics 1, 57-60 (2006).

Borel, P. I.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compacr two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Chong, H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compacr two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Dagli, N.

I. Kiyat, A. Aydinli, and N. Dagli, "A compact silicon-on-insulator polarization splitter," IEEE Photon. Technol. Lett. 17, 100-102 (2005).
[CrossRef]

De La Rue, R. M.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compacr two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Foresi, J.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
[CrossRef]

Frandsen, L. H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compacr two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Fukuda, H.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguides," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, "Ultrasmall polarization splitter based on silicon wire waveguides," Opt. Express,  14, 12401-12408 (2006).
[CrossRef] [PubMed]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon micro-fabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron.E 87-C, 351-358 (2004).

Groen, F. H.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, "A short polarization splitter without metal overlays on InGaAsP-InP," IEEE Photon. Technol. Lett. 9, 209-211 (1997).
[CrossRef]

Haus, H. A.

Ippen, E. P.

Itabashi, S.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguides," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, "Ultrasmall polarization splitter based on silicon wire waveguides," Opt. Express,  14, 12401-12408 (2006).
[CrossRef] [PubMed]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon micro-fabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron.E 87-C, 351-358 (2004).

K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges," Opt. Lett. 28, 1663-1664 (2003)
[CrossRef] [PubMed]

Kimerling, L. C.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
[CrossRef]

Kiyat, I.

I. Kiyat, A. Aydinli, and N. Dagli, "A compact silicon-on-insulator polarization splitter," IEEE Photon. Technol. Lett. 17, 100-102 (2005).
[CrossRef]

Lee, K. K.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
[CrossRef]

Lim, D. R.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
[CrossRef]

Luan, H.-C.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
[CrossRef]

Metaal, E. G.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, "A short polarization splitter without metal overlays on InGaAsP-InP," IEEE Photon. Technol. Lett. 9, 209-211 (1997).
[CrossRef]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon micro-fabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron.E 87-C, 351-358 (2004).

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 ?m square Si wire waveguides to singlemode fibers," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Oei, Y. S.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, "A short polarization splitter without metal overlays on InGaAsP-InP," IEEE Photon. Technol. Lett. 9, 209-211 (1997).
[CrossRef]

Pedersen, J. W.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, "A short polarization splitter without metal overlays on InGaAsP-InP," IEEE Photon. Technol. Lett. 9, 209-211 (1997).
[CrossRef]

Shinojima, S.

Shoji, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguides," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon micro-fabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron.E 87-C, 351-358 (2004).

K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges," Opt. Lett. 28, 1663-1664 (2003)
[CrossRef] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 ?m square Si wire waveguides to singlemode fibers," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Taillaert, D.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compacr two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Takahashi, J.

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon micro-fabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron.E 87-C, 351-358 (2004).

K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges," Opt. Lett. 28, 1663-1664 (2003)
[CrossRef] [PubMed]

Takahashi, M.

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon micro-fabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron.E 87-C, 351-358 (2004).

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon micro-fabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron.E 87-C, 351-358 (2004).

Tsuchizawa, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguides," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, "Ultrasmall polarization splitter based on silicon wire waveguides," Opt. Express,  14, 12401-12408 (2006).
[CrossRef] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon micro-fabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron.E 87-C, 351-358 (2004).

K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges," Opt. Lett. 28, 1663-1664 (2003)
[CrossRef] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 ?m square Si wire waveguides to singlemode fibers," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Uchiyama, S.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron.E 87-C, 351-358 (2004).

van der Tol, J. J. G. M.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, "A short polarization splitter without metal overlays on InGaAsP-InP," IEEE Photon. Technol. Lett. 9, 209-211 (1997).
[CrossRef]

van Gaalen, J. J.-W.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, "A short polarization splitter without metal overlays on InGaAsP-InP," IEEE Photon. Technol. Lett. 9, 209-211 (1997).
[CrossRef]

Watanabe, T.

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, "Ultrasmall polarization splitter based on silicon wire waveguides," Opt. Express,  14, 12401-12408 (2006).
[CrossRef] [PubMed]

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguides," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon micro-fabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron.E 87-C, 351-358 (2004).

K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges," Opt. Lett. 28, 1663-1664 (2003)
[CrossRef] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 ?m square Si wire waveguides to singlemode fibers," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovi’c, P. T. Rakich, L. Socci, F. X. K¨artner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nat. Photonics 1, 57-60 (2006).

M. R. Watts, H. A. Haus, and E. P. Ippen, "Integrated mode-evolution-based polarization rotators," Opt. Lett. 30, 138-140 (2005).
[CrossRef] [PubMed]

M. R. Watts, H. A. Haus, and E. P. Ippen, "Integrated mode-evolution-based polarization splitter," Opt. Lett. 30, 967-969 (2005).
[CrossRef] [PubMed]

Yamada, K.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguides," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, "Ultrasmall polarization splitter based on silicon wire waveguides," Opt. Express,  14, 12401-12408 (2006).
[CrossRef] [PubMed]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon micro-fabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron.E 87-C, 351-358 (2004).

K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges," Opt. Lett. 28, 1663-1664 (2003)
[CrossRef] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 ?m square Si wire waveguides to singlemode fibers," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
[CrossRef]

E (1)

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron.E 87-C, 351-358 (2004).

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 ?m square Si wire waveguides to singlemode fibers," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon micro-fabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguides," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compacr two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, "A short polarization splitter without metal overlays on InGaAsP-InP," IEEE Photon. Technol. Lett. 9, 209-211 (1997).
[CrossRef]

I. Kiyat, A. Aydinli, and N. Dagli, "A compact silicon-on-insulator polarization splitter," IEEE Photon. Technol. Lett. 17, 100-102 (2005).
[CrossRef]

Nat. Photonics (1)

T. Barwicz, M. R. Watts, M. A. Popovi’c, P. T. Rakich, L. Socci, F. X. K¨artner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nat. Photonics 1, 57-60 (2006).

Opt. Express (2)

Opt. Lett. (3)

Other (2)

"FIMMWAVE Version 4.06," Photon Design, Dec. 2002.

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, "Towards integrated polarization diversity: design, fabrication, and characterization of integrated polarization splitters and rotators," OFC2005 Technical Digest PDP11 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the polarization rotator. (b) Core cross-section and eigen-axes of the rotator.

Fig. 2.
Fig. 2.

(a) Sufficient rotator length (L π/2) as a function of 2nd core size. (b) Eigenmodes of the rotator.

Fig. 3.
Fig. 3.

(a) Field intensities of the TE and TM modes for the rotator calculated by FDTD. (b) Transmittances of TE and TM modes for the rotator calculated by EME.

Fig. 4.
Fig. 4.

(a) Excess loss as a function of 2nd core size. (b) Transmission spectra for the rotator calculated by EME.

Fig. 5.
Fig. 5.

Schematic diagram of the polarization rotator.

Fig. 6.
Fig. 6.

Measured transmission spectra of the rotators for the incident light with TM polarization.

Fig. 7.
Fig. 7.

(a) Schematic diagram of a Poincaré sphere. (b) Measured Poincaré map for the rotator with various lengths.

Fig. 8.
Fig. 8.

Measured rotation angle for the rotator with various lengths.

Fig. 9.
Fig. 9.

Insertion loss of the filters estimated from the rotation angle of the rotator for various offsets.

Metrics