Abstract

An interferometric synthetic aperture microscopy (ISAM) system design with real-time 2D cross-sectional processing is described in detail. The system can acquire, process, and display the ISAM reconstructed images at frame rates of 2.25 frames per second for 512×1024 pixel images. This system provides quantitatively meaningful structural information from previously indistinguishable scattering intensities and provides proof of feasibility for future real-time ISAM systems.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nat. Phys. 3, 129-134 (2007).
    [CrossRef]
  2. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Inverse scattering problem for optical coherence tomography," J. Opt. Soc. Am. A 23, 1027-1037 (2006).
    [CrossRef]
  3. T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, "Inverse scattering for high-resolution interferometric microscopy," Opt. Lett. 31, 3585-3587 (2006).
    [CrossRef] [PubMed]
  4. D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, "Inverse scattering for rotationally scanned optical coherence tomography," J. Opt. Soc. Am. A 23, 2433-2439 (2006).
    [CrossRef]
  5. D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, "Inverse scattering for frequency-scanned full-field optical coherence tomography," J. Opt. Soc. Am. A 24, 129-134 (2007).
    [CrossRef]
  6. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254(5035), 1178-1181 (1991).
    [CrossRef] [PubMed]
  7. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nat. Med. 4, 861-864 (1998).
    [CrossRef] [PubMed]
  8. J. M. Schmitt, "Optical coherence tomography (OCT): A review," IEEE J. Select. Topics Quantum Electron.,  5, 1205-1215 (1999).
    [CrossRef]
  9. B. E. Bouma and G. J. Tearney, The Handbook of Optical Coherence Tomography, (Marcel Dekker, New York, 2002).
  10. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590-592 (1994).
    [CrossRef] [PubMed]
  11. J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with optical coherence microscopy," Dermatology 191, 93-98 (1995).
    [CrossRef] [PubMed]
  12. J. A. Izatt, H.-W. Kulkarni, K. Wang, M. W. Kobayashi, and M. W. Sivak, "Optical coherence tomography and microscopy in gastrointestinal tissues," IEEE J. Sel. Tops. Quantum Electron. 2, 1017-1028 (1996).
    [CrossRef]
  13. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express. 12, 2404-2422 (2004).
    [CrossRef] [PubMed]
  14. A. M. Rollins, S. Yazdanfar, J. K. Barton, and J. A. Izatt, "Real-time in vivo color Doppler optical coherence tomography," J. Biomed. Opt. 7, 123-129 (2002).
    [CrossRef] [PubMed]
  15. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2002).
    [CrossRef]
  16. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, "Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography," Opt. Lett. 29, 1763-1765 (2004).
    [CrossRef] [PubMed]
  17. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, "Extended focus depth for Fourier domain optical coherence microscopy," Opt. Lett. 31, 2450-2452 (2006).
    [CrossRef] [PubMed]
  18. Y. Yasuno, J. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, "Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography," Opt. Express 14, 1006-1020 (2006).
    [CrossRef] [PubMed]
  19. Y. Nakamura, J. Sugisaka, Y. Sando, T. Endo, M. Itoh, T. Yatagai, and Y. Yasuno, "Complex Numerical Processing for In-Focus Line-Field Spectral-Domain Optical Coherence Tomography," Jpn. J. Appl. Phys. 46, 1774-1778 (2007).
    [CrossRef]
  20. B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, P. S. Carney, "Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy," J. Opt. Soc. Am. A 24, 2527-2542 (2007).
    [CrossRef]
  21. B. J. Davis, T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, "Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy," Opt. Lett. 32, 1441-1443 (2007).
    [CrossRef] [PubMed]
  22. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, "Autofocus algorithm for dispersion correction in optical coherence tomography," Appl. Opt. 42, 3038-3046 (2003).
    [CrossRef] [PubMed]
  23. C. Pozrikidis, Numerical Computation in Science and Engineering (Oxford University Press, New York Oxford, 1998).
  24. J. J. Knab, "Interpolation of band-limited functions using the approximate prolate series," IEEE Trans. Inf. Theory IT-25,717-720 (1979).
    [CrossRef]
  25. L. P. Yaroslavsky, "Efficient algorithm for discrete sinc interpolation," Appl. Opt. 36, 460-463 (1997).
    [CrossRef] [PubMed]
  26. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Phase stability technique for inverse scattering in optical coherence tomography," 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 578-581 (2006).
  27. L. Lepetit, G. Chériaux, and M. Joffre, "Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy," J. Opt. Soc. Am. B 12, 2467-2474 (1995).
    [CrossRef]
  28. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004).
    [CrossRef] [PubMed]

2007

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nat. Phys. 3, 129-134 (2007).
[CrossRef]

D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, "Inverse scattering for frequency-scanned full-field optical coherence tomography," J. Opt. Soc. Am. A 24, 129-134 (2007).
[CrossRef]

Y. Nakamura, J. Sugisaka, Y. Sando, T. Endo, M. Itoh, T. Yatagai, and Y. Yasuno, "Complex Numerical Processing for In-Focus Line-Field Spectral-Domain Optical Coherence Tomography," Jpn. J. Appl. Phys. 46, 1774-1778 (2007).
[CrossRef]

B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, P. S. Carney, "Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy," J. Opt. Soc. Am. A 24, 2527-2542 (2007).
[CrossRef]

B. J. Davis, T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, "Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy," Opt. Lett. 32, 1441-1443 (2007).
[CrossRef] [PubMed]

2006

2004

2003

2002

1999

J. M. Schmitt, "Optical coherence tomography (OCT): A review," IEEE J. Select. Topics Quantum Electron.,  5, 1205-1215 (1999).
[CrossRef]

1998

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nat. Med. 4, 861-864 (1998).
[CrossRef] [PubMed]

1997

1996

J. A. Izatt, H.-W. Kulkarni, K. Wang, M. W. Kobayashi, and M. W. Sivak, "Optical coherence tomography and microscopy in gastrointestinal tissues," IEEE J. Sel. Tops. Quantum Electron. 2, 1017-1028 (1996).
[CrossRef]

1995

J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with optical coherence microscopy," Dermatology 191, 93-98 (1995).
[CrossRef] [PubMed]

L. Lepetit, G. Chériaux, and M. Joffre, "Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy," J. Opt. Soc. Am. B 12, 2467-2474 (1995).
[CrossRef]

1994

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

1979

J. J. Knab, "Interpolation of band-limited functions using the approximate prolate series," IEEE Trans. Inf. Theory IT-25,717-720 (1979).
[CrossRef]

Bachmann, A. H.

Bajraszewski, T.

Barton, J. K.

A. M. Rollins, S. Yazdanfar, J. K. Barton, and J. A. Izatt, "Real-time in vivo color Doppler optical coherence tomography," J. Biomed. Opt. 7, 123-129 (2002).
[CrossRef] [PubMed]

Bonner, R. F.

J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with optical coherence microscopy," Dermatology 191, 93-98 (1995).
[CrossRef] [PubMed]

Boppart, S. A.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nat. Phys. 3, 129-134 (2007).
[CrossRef]

B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, P. S. Carney, "Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy," J. Opt. Soc. Am. A 24, 2527-2542 (2007).
[CrossRef]

B. J. Davis, T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, "Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy," Opt. Lett. 32, 1441-1443 (2007).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Inverse scattering problem for optical coherence tomography," J. Opt. Soc. Am. A 23, 1027-1037 (2006).
[CrossRef]

T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, "Inverse scattering for high-resolution interferometric microscopy," Opt. Lett. 31, 3585-3587 (2006).
[CrossRef] [PubMed]

D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, "Inverse scattering for rotationally scanned optical coherence tomography," J. Opt. Soc. Am. A 23, 2433-2439 (2006).
[CrossRef]

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, "Autofocus algorithm for dispersion correction in optical coherence tomography," Appl. Opt. 42, 3038-3046 (2003).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nat. Med. 4, 861-864 (1998).
[CrossRef] [PubMed]

Boppart, S. A.

D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, "Inverse scattering for frequency-scanned full-field optical coherence tomography," J. Opt. Soc. Am. A 24, 129-134 (2007).
[CrossRef]

Bouma, B. E.

Brezinski, M. E.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nat. Med. 4, 861-864 (1998).
[CrossRef] [PubMed]

Carney, P. S.

Carney, P. S.

D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, "Inverse scattering for frequency-scanned full-field optical coherence tomography," J. Opt. Soc. Am. A 24, 129-134 (2007).
[CrossRef]

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, T. C.

Chen, Y.

Chériaux, G.

Cobb, M. J.

Davis, B. J.

de Boer, J. F.

Drexler, W.

Duker, J.

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express. 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Endo, T.

Y. Nakamura, J. Sugisaka, Y. Sando, T. Endo, M. Itoh, T. Yatagai, and Y. Yasuno, "Complex Numerical Processing for In-Focus Line-Field Spectral-Domain Optical Coherence Tomography," Jpn. J. Appl. Phys. 46, 1774-1778 (2007).
[CrossRef]

Fercher, A.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J.

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express. 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Fujimoto, J. G.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nat. Med. 4, 861-864 (1998).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590-592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590-592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Itoh, M.

Y. Nakamura, J. Sugisaka, Y. Sando, T. Endo, M. Itoh, T. Yatagai, and Y. Yasuno, "Complex Numerical Processing for In-Focus Line-Field Spectral-Domain Optical Coherence Tomography," Jpn. J. Appl. Phys. 46, 1774-1778 (2007).
[CrossRef]

Y. Yasuno, J. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, "Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography," Opt. Express 14, 1006-1020 (2006).
[CrossRef] [PubMed]

Izatt, J. A.

A. M. Rollins, S. Yazdanfar, J. K. Barton, and J. A. Izatt, "Real-time in vivo color Doppler optical coherence tomography," J. Biomed. Opt. 7, 123-129 (2002).
[CrossRef] [PubMed]

J. A. Izatt, H.-W. Kulkarni, K. Wang, M. W. Kobayashi, and M. W. Sivak, "Optical coherence tomography and microscopy in gastrointestinal tissues," IEEE J. Sel. Tops. Quantum Electron. 2, 1017-1028 (1996).
[CrossRef]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590-592 (1994).
[CrossRef] [PubMed]

Joffre, M.

Kimmey, M. B.

Knab, J. J.

J. J. Knab, "Interpolation of band-limited functions using the approximate prolate series," IEEE Trans. Inf. Theory IT-25,717-720 (1979).
[CrossRef]

Ko, T.

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express. 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Kobayashi, M. W.

J. A. Izatt, H.-W. Kulkarni, K. Wang, M. W. Kobayashi, and M. W. Sivak, "Optical coherence tomography and microscopy in gastrointestinal tissues," IEEE J. Sel. Tops. Quantum Electron. 2, 1017-1028 (1996).
[CrossRef]

Kowalczyk, A.

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express. 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Kulkarni, H.-W.

J. A. Izatt, H.-W. Kulkarni, K. Wang, M. W. Kobayashi, and M. W. Sivak, "Optical coherence tomography and microscopy in gastrointestinal tissues," IEEE J. Sel. Tops. Quantum Electron. 2, 1017-1028 (1996).
[CrossRef]

Lasser, T.

Leitgeb, R.

Leitgeb, R. A.

Lepetit, L.

Li, X.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Liu, X.

Makita, S.

Marks, D. L.

Marks, D. L.

D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, "Inverse scattering for frequency-scanned full-field optical coherence tomography," J. Opt. Soc. Am. A 24, 129-134 (2007).
[CrossRef]

Nakamura, Y.

Y. Nakamura, J. Sugisaka, Y. Sando, T. Endo, M. Itoh, T. Yatagai, and Y. Yasuno, "Complex Numerical Processing for In-Focus Line-Field Spectral-Domain Optical Coherence Tomography," Jpn. J. Appl. Phys. 46, 1774-1778 (2007).
[CrossRef]

Y. Yasuno, J. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, "Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography," Opt. Express 14, 1006-1020 (2006).
[CrossRef] [PubMed]

Nassif, N. A.

Oldenburg, A. L.

Owen, G. M.

Park, B. H.

Pierce, M. C.

Pitris, C.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nat. Med. 4, 861-864 (1998).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Ralston, T. S.

Ralston, T. S.

D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, "Inverse scattering for frequency-scanned full-field optical coherence tomography," J. Opt. Soc. Am. A 24, 129-134 (2007).
[CrossRef]

Reynolds, J. J.

Rollins, A. M.

A. M. Rollins, S. Yazdanfar, J. K. Barton, and J. A. Izatt, "Real-time in vivo color Doppler optical coherence tomography," J. Biomed. Opt. 7, 123-129 (2002).
[CrossRef] [PubMed]

Sando, Y.

Y. Nakamura, J. Sugisaka, Y. Sando, T. Endo, M. Itoh, T. Yatagai, and Y. Yasuno, "Complex Numerical Processing for In-Focus Line-Field Spectral-Domain Optical Coherence Tomography," Jpn. J. Appl. Phys. 46, 1774-1778 (2007).
[CrossRef]

Y. Yasuno, J. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, "Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography," Opt. Express 14, 1006-1020 (2006).
[CrossRef] [PubMed]

Schlachter, S. C.

Schmetterer, L.

Schmitt, J. M.

J. M. Schmitt, "Optical coherence tomography (OCT): A review," IEEE J. Select. Topics Quantum Electron.,  5, 1205-1215 (1999).
[CrossRef]

J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with optical coherence microscopy," Dermatology 191, 93-98 (1995).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Sivak, M. W.

J. A. Izatt, H.-W. Kulkarni, K. Wang, M. W. Kobayashi, and M. W. Sivak, "Optical coherence tomography and microscopy in gastrointestinal tissues," IEEE J. Sel. Tops. Quantum Electron. 2, 1017-1028 (1996).
[CrossRef]

Southern, J. F.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nat. Med. 4, 861-864 (1998).
[CrossRef] [PubMed]

Srinivasan, V.

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express. 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Steinmann, L.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Sugisaka, J.

Y. Nakamura, J. Sugisaka, Y. Sando, T. Endo, M. Itoh, T. Yatagai, and Y. Yasuno, "Complex Numerical Processing for In-Focus Line-Field Spectral-Domain Optical Coherence Tomography," Jpn. J. Appl. Phys. 46, 1774-1778 (2007).
[CrossRef]

Y. Yasuno, J. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, "Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography," Opt. Express 14, 1006-1020 (2006).
[CrossRef] [PubMed]

Swanson, E. A.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590-592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Villiger, M.

Wang, K.

J. A. Izatt, H.-W. Kulkarni, K. Wang, M. W. Kobayashi, and M. W. Sivak, "Optical coherence tomography and microscopy in gastrointestinal tissues," IEEE J. Sel. Tops. Quantum Electron. 2, 1017-1028 (1996).
[CrossRef]

Wojtkowski, M.

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express. 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Yadlowsky, M. J.

J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with optical coherence microscopy," Dermatology 191, 93-98 (1995).
[CrossRef] [PubMed]

Yaroslavsky, L. P.

Yasuno, Y.

Y. Nakamura, J. Sugisaka, Y. Sando, T. Endo, M. Itoh, T. Yatagai, and Y. Yasuno, "Complex Numerical Processing for In-Focus Line-Field Spectral-Domain Optical Coherence Tomography," Jpn. J. Appl. Phys. 46, 1774-1778 (2007).
[CrossRef]

Y. Yasuno, J. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, "Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography," Opt. Express 14, 1006-1020 (2006).
[CrossRef] [PubMed]

Yatagai, T.

Y. Nakamura, J. Sugisaka, Y. Sando, T. Endo, M. Itoh, T. Yatagai, and Y. Yasuno, "Complex Numerical Processing for In-Focus Line-Field Spectral-Domain Optical Coherence Tomography," Jpn. J. Appl. Phys. 46, 1774-1778 (2007).
[CrossRef]

Y. Yasuno, J. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, "Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography," Opt. Express 14, 1006-1020 (2006).
[CrossRef] [PubMed]

Yazdanfar, S.

A. M. Rollins, S. Yazdanfar, J. K. Barton, and J. A. Izatt, "Real-time in vivo color Doppler optical coherence tomography," J. Biomed. Opt. 7, 123-129 (2002).
[CrossRef] [PubMed]

Yun, S. H.

Zawadzki, R.

Appl. Opt.

Dermatology

J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with optical coherence microscopy," Dermatology 191, 93-98 (1995).
[CrossRef] [PubMed]

IEEE J. Sel. Tops. Quantum Electron.

J. A. Izatt, H.-W. Kulkarni, K. Wang, M. W. Kobayashi, and M. W. Sivak, "Optical coherence tomography and microscopy in gastrointestinal tissues," IEEE J. Sel. Tops. Quantum Electron. 2, 1017-1028 (1996).
[CrossRef]

IEEE J. Select. Topics Quantum Electron.

J. M. Schmitt, "Optical coherence tomography (OCT): A review," IEEE J. Select. Topics Quantum Electron.,  5, 1205-1215 (1999).
[CrossRef]

IEEE Trans. Inf. Theory

J. J. Knab, "Interpolation of band-limited functions using the approximate prolate series," IEEE Trans. Inf. Theory IT-25,717-720 (1979).
[CrossRef]

J. Biomed. Opt.

A. M. Rollins, S. Yazdanfar, J. K. Barton, and J. A. Izatt, "Real-time in vivo color Doppler optical coherence tomography," J. Biomed. Opt. 7, 123-129 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

Y. Nakamura, J. Sugisaka, Y. Sando, T. Endo, M. Itoh, T. Yatagai, and Y. Yasuno, "Complex Numerical Processing for In-Focus Line-Field Spectral-Domain Optical Coherence Tomography," Jpn. J. Appl. Phys. 46, 1774-1778 (2007).
[CrossRef]

Nat. Med.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nat. Med. 4, 861-864 (1998).
[CrossRef] [PubMed]

Nat. Phys.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nat. Phys. 3, 129-134 (2007).
[CrossRef]

Opt. Express

Opt. Express.

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express. 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Other

B. E. Bouma and G. J. Tearney, The Handbook of Optical Coherence Tomography, (Marcel Dekker, New York, 2002).

C. Pozrikidis, Numerical Computation in Science and Engineering (Oxford University Press, New York Oxford, 1998).

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Phase stability technique for inverse scattering in optical coherence tomography," 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 578-581 (2006).

Supplementary Material (3)

» Media 1: AVI (6110 KB)     
» Media 2: AVI (6110 KB)     
» Media 3: AVI (14946 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a). The relation between the spatial frequencies of the signal space and the spatial frequencies in the object space. (b). Sampling lattice for selected (β, |q|) values on a uniform (k, |q|) grid. (c). Sampling lattice for selected (k, |q|) values on a uniform (β, |q|) grid.

Fig. 2.
Fig. 2.

Data flow chart for prototype ISAM processing.

Fig. 3.
Fig. 3.

Computational flow chart for memory allocation for each step of the inverse scattering algorithm.

Fig. 4.
Fig. 4.

Combined spectral-domain and time-domain optical coherence tomography system.

Fig. 5.
Fig. 5.

Tissue phantom imaged with real-time inverse scattering OCT system. The original OCT image (left) and the inverse scattering solution (right) are computed in real-time. Real-time translation of the sample stage is shown in the associated movie (movie1.avi, 6.1 MB). [Media 1]

Fig. 6.
Fig. 6.

Human breast tumor tissue imaged with OCT (left) and with the real-time 2D ISAM system (right), and post-processed in slow scan direction. The en face slice shown in the plane of the page is 450 µm above the focus. The volumetric ISAM data shows cell and nuclei data not observed in the volumetric OCT data. The scale bar is 100 µm. A portion of the real-time 2D ISAM acquisition (movie2.avi, 6.1 MB) and a representative en face fly-through (movie3.avi, 15 MB) are available online. [Media 2] [Media 3]

Fig. 7.
Fig. 7.

Corresponding histological section of human breast tumor tissue showing comparable features with Fig. 6. The scale bar represents 100 µm.

Tables (4)

Tables Icon

Table 1 Analytic coordinates

Tables Icon

Table 2. Analytic signals

Tables Icon

Table 3. Discrete coordinates

Tables Icon

Table 4 Discrete signals

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

S ( q , k ) = k 2 α 2 i 2 π 2 A ( k ) e 2 ik z ( q / 2 ) z 0 k z ( q / 2 ) e α 2 q 2 4 k 2 η [ q , 2 k z ( q 2 ) ] ,
η + ( q , β ) = [ f * ( q , k , β ) S ( q , k ) f ( q , k , β ) 2 + 2 λ k k z ( q / 2 ) ] k = 1 2 β 2 + q 2
f ( q , k , β ) = k 2 α 2 i 2 π 2 A ( k ) e 2 ik 2 ( q 2 ) z 0 k z ( q 2 ) e α 2 q 2 4 k 2 ,
η + ( q , β ) = B ( q , k ) S ( q , k ) | k = 1 2 β 2 + q 2 ,
B ( q , k ) = i k α 2 π 2 A ( k ) e α 2 q 2 4 k 2 k 3 α 4 2 π 4 A 2 ( k ) k z ( q 2 ) e α 2 q 2 2 k 2 + λ .
η + ( q , β ) = S ( q , k ) k = 1 2 β 2 + q 2
i n = 2 n + α 2 ( 2 n N ω ctr ) 2 + α 3 ( 2 n N ω ctr ) 3 ,
a x [ n ] = { i n + x ,     0 i n + x N 1 0 ,               i n + x < 0   , x = 1,0,1,2 and 0 n < N N 1 , i n + x > N 1
f n = i n i n , 0 n < N
b 1 [ n ] = ( 1 f n ) 3 6
b 0 [ n ] = ( 4 6 f n 2 + 3 f n 3 ) 6
b 1 [ n ] = ( 1 + 3 f n + 3 f n 2 3 f n 3 ) 6 , 0 n < N
b 2 [ n ] = f n 3 6
k min = β min 2 ,
k max = 0.5 β max 2 + q max 2 .
q [ m ] = { m 2 q max M , 0 < m M 2 ( m M ) 2 q max M , M 2 < m M ,
β [ n ] = n ( β max β min ) N + β min , 0 n < N ,
kq [ m , n ] = N k max k min ( 0.5 β [ n ] 2 + q [ m ] 2 k min ) + 1 , 0 n < N , 0 m < M
a q , x [ m , n ] = { kq [ m , n ] + x , 0 kq [ m , n ] + x N 1 0 , kq [ m , n ] + x < 0 ; x = 1,0,1,2 ; N 1 , kq [ m , n ] + x > N 1
  0 n < N ; 0 m < M
f m , n = kq [ m , n ] kq [ m , n ] , 0 n < N ; 0 m < M
b′ q , 1 [ m , n ] = ( 1 f m , n ) 3 6
b′ q , 0 [ m , n ] = ( 4 6 f m , n 2 + 3 f m , n 3 ) 6
b′ q , 1 [ m , n ] = ( 1 + 3 f m , n + 3 f m , n 2 3 f m , n 3 ) 6 , 0 n < N′ ; 0 m < M
b′ q , 2 [ m , n ] = f m , n 3 6
S rk [ m , n ] = S r ω [ m , a 1 { n } ] b 1 { n } + S r ω [ m , a 0 { n } ] b 0 { n }
+ S r ω [ m , a 1 { n } ] b 1 { n } + S r ω [ m , a 2 { n } ] b 2 { n } ,
S rt [ m , n ] = k = 0 N 1 S rk [ m , k ] e 2 π i N kn , 0 n < N and 0 m   < M
S r t [ m , n ] = { S rt [ m , n + N 2 ] 0 n < N 2 0 N 2 n < N 2 + 2 and 0 m < M . S rt [ m , n N′ 2 ] N 2 + 2 n < N
S qk [ m , n ] = 1 MN′ r = 0 M 1 t = 0 N′ 1 S rt′ [ r , t ] e 2 π i N′ nt e 2 π i M mr , 0 n < N′ and 0 m < M .
η q β [ m , n ] = S q k + [ m , a q , 1 { m , n } ] b q , 1 { m , n } + S q k [ m , a q , 0 { m , n } ] b q , 0 { m , n }
  + S q k [ m , a q , 1 { m , n } ] b q , 1 { m , n } + S q k [ m , a q , 2 { m , n } ] b q , 2 { m , n }
                                                                                                                                                      , 0 n < N and 0 m < M ,
η r z [ m , n ] = q = 0 M 1 β = 0 N 1 η q β [ q , β ] e 2 π i N β n e 2 π i M q m , 0 n < N and 0 m < M .
η r z [ m , n ] = { η r z [ m , n + N 2 ] 0 n < N 2 η r z [ m , n N 2 ] N 2 n < N ,

Metrics