Abstract

The numerical recording and reconstruction of a color holographic image are achieved by using digital lensless Fourier transform holography. Firstly, for a color object, three monochromatic digital holograms with different wavelengths (red, green, blue) are recorded by a black-white CCD, respectively. Then the reconstructed monochromatic holographic images (red, green, blue) are adjusted to be same in size through padding digital holograms with zeros, and the corresponding digital color holographic image is acquired by accurately syncretizing the resized reconstructed monochromatic images. One of the advantages using lensless Fourier transform holography is that it can well assure the precise superposition of the reconstructed images. By applying median filtering technique and superposing the speckle fields with different distributions, the speckle noises are well suppressed and the quality of the digital color holographic image is greatly improved. This digital color holography with high quality of reconstruction effect would have potential applications on digital holographic display of color objects.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Javidi and E. Tajahuerce, "Three-dimensional object recognition by use of digital holography," Opt. Lett. 25, 610-612 (2000).
    [CrossRef]
  2. B. Javidi and T. Nomura, "Securing information by use of digital holography," Opt. lett. 25, 28-30 (2000)
    [CrossRef]
  3. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, "Whole optical wavefields reconstruction by digital holography," Opt. Express 9, 294-302 (2001).
    [CrossRef] [PubMed]
  4. Y. Zhang, Q. Lü, B. Ge, H. Zhao, and Y. Sun, "Digital holography and its application," Proc. SPIE 5636, 200-211 (2005).
    [CrossRef]
  5. U. Schnars and WPO. Juptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, 85-101 (2002).
    [CrossRef]
  6. D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, "Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength," Opt. Commun. 260, 113-116 (2006).
    [CrossRef]
  7. B. Javidi, P. Ferraro, S. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, "Three-dimensional image fusion by use of multiwavelength digital holography," Opt. Lett. 30, 144-146 (2005).
    [CrossRef] [PubMed]
  8. C. Wagner, S. Seebacher, W. Osten and W. Jüptner, "Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology," Appl. Opt. 38, 4812-4820 (1999).
    [CrossRef]
  9. S. Takao, S. Yoneyama and M. Takashi, "Minute displacement and strain analysis using lensless Fourier transformed holographic interferometry," Opt. Lasers Eng. 38, 233-244 (2002).
    [CrossRef]
  10. D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H H. Scheld, and G. von bally, "Lensless Fourier holography for digital holographic interferometry on biological samples," Opt. Lasers Eng. 36, 241-249 (2001).
    [CrossRef]
  11. G. Pedrini and H. J. Tiziani, "Short-coherence digital microscopy by use of a lensless holographic imaging system," Appl. Opt. 41, 4489-4496 (2002).
    [CrossRef] [PubMed]
  12. S. H. Lee, P. Naulleau, K. A. Goldberg, C. H. Cho, S. Jeong, and J. Bokor, "Extreme-ultraviolet lensless Fourier-transform holography," Appl. Opt. 40, 2655-2661 (2001).
    [CrossRef]
  13. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, "Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms," Opt. Lett. 29, 854-856 (2004).
    [CrossRef] [PubMed]
  14. Q. Fan and J. Zhao, "Resolution analysis of digital holography," Proc. SPIE 6027, 905-910 (2006).
  15. J. Garcia-Sucerquia, J. A. Herrera Ramirez, R. Castafieda, and D. Velasquez Prieto, "Reduction of speckle noise in digital holography," Proc. SPIE 5622, 1359-1364 (2004).
    [CrossRef]

2006 (2)

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, "Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength," Opt. Commun. 260, 113-116 (2006).
[CrossRef]

Q. Fan and J. Zhao, "Resolution analysis of digital holography," Proc. SPIE 6027, 905-910 (2006).

2005 (2)

2004 (2)

2002 (3)

U. Schnars and WPO. Juptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, 85-101 (2002).
[CrossRef]

S. Takao, S. Yoneyama and M. Takashi, "Minute displacement and strain analysis using lensless Fourier transformed holographic interferometry," Opt. Lasers Eng. 38, 233-244 (2002).
[CrossRef]

G. Pedrini and H. J. Tiziani, "Short-coherence digital microscopy by use of a lensless holographic imaging system," Appl. Opt. 41, 4489-4496 (2002).
[CrossRef] [PubMed]

2001 (3)

2000 (2)

1999 (1)

Alfieri, D.

Bokor, J.

Castafieda, R.

J. Garcia-Sucerquia, J. A. Herrera Ramirez, R. Castafieda, and D. Velasquez Prieto, "Reduction of speckle noise in digital holography," Proc. SPIE 5622, 1359-1364 (2004).
[CrossRef]

Cho, C. H.

Coppola, G.

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, "Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength," Opt. Commun. 260, 113-116 (2006).
[CrossRef]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, "Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms," Opt. Lett. 29, 854-856 (2004).
[CrossRef] [PubMed]

De Nicola, S.

Deiwick, M.

D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H H. Scheld, and G. von bally, "Lensless Fourier holography for digital holographic interferometry on biological samples," Opt. Lasers Eng. 36, 241-249 (2001).
[CrossRef]

Delere, H.

D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H H. Scheld, and G. von bally, "Lensless Fourier holography for digital holographic interferometry on biological samples," Opt. Lasers Eng. 36, 241-249 (2001).
[CrossRef]

Dirksen, D.

D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H H. Scheld, and G. von bally, "Lensless Fourier holography for digital holographic interferometry on biological samples," Opt. Lasers Eng. 36, 241-249 (2001).
[CrossRef]

Droste, H.

D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H H. Scheld, and G. von bally, "Lensless Fourier holography for digital holographic interferometry on biological samples," Opt. Lasers Eng. 36, 241-249 (2001).
[CrossRef]

Fan, Q.

Q. Fan and J. Zhao, "Resolution analysis of digital holography," Proc. SPIE 6027, 905-910 (2006).

Ferraro, P.

Finizio, A.

Garcia-Sucerquia, J.

J. Garcia-Sucerquia, J. A. Herrera Ramirez, R. Castafieda, and D. Velasquez Prieto, "Reduction of speckle noise in digital holography," Proc. SPIE 5622, 1359-1364 (2004).
[CrossRef]

Ge, B.

Y. Zhang, Q. Lü, B. Ge, H. Zhao, and Y. Sun, "Digital holography and its application," Proc. SPIE 5636, 200-211 (2005).
[CrossRef]

Goldberg, K. A.

Grilli, S.

Herrera Ramirez, J. A.

J. Garcia-Sucerquia, J. A. Herrera Ramirez, R. Castafieda, and D. Velasquez Prieto, "Reduction of speckle noise in digital holography," Proc. SPIE 5622, 1359-1364 (2004).
[CrossRef]

Hong, S.

Javidi, B.

Jeong, S.

Juptner, WPO.

U. Schnars and WPO. Juptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, 85-101 (2002).
[CrossRef]

Jüptner, W.

Kemper, B.

D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H H. Scheld, and G. von bally, "Lensless Fourier holography for digital holographic interferometry on biological samples," Opt. Lasers Eng. 36, 241-249 (2001).
[CrossRef]

Lee, S. H.

Lü, Q.

Y. Zhang, Q. Lü, B. Ge, H. Zhao, and Y. Sun, "Digital holography and its application," Proc. SPIE 5636, 200-211 (2005).
[CrossRef]

Meucci, R.

Naulleau, P.

Nomura, T.

Osten, W.

Pedrini, G.

Pierattini, G.

Scheld, HH.

D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H H. Scheld, and G. von bally, "Lensless Fourier holography for digital holographic interferometry on biological samples," Opt. Lasers Eng. 36, 241-249 (2001).
[CrossRef]

Schnars, U.

U. Schnars and WPO. Juptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, 85-101 (2002).
[CrossRef]

Seebacher, S.

Sun, Y.

Y. Zhang, Q. Lü, B. Ge, H. Zhao, and Y. Sun, "Digital holography and its application," Proc. SPIE 5636, 200-211 (2005).
[CrossRef]

Tajahuerce, E.

Takao, S.

S. Takao, S. Yoneyama and M. Takashi, "Minute displacement and strain analysis using lensless Fourier transformed holographic interferometry," Opt. Lasers Eng. 38, 233-244 (2002).
[CrossRef]

Takashi, M.

S. Takao, S. Yoneyama and M. Takashi, "Minute displacement and strain analysis using lensless Fourier transformed holographic interferometry," Opt. Lasers Eng. 38, 233-244 (2002).
[CrossRef]

Tiziani, H. J.

Velasquez Prieto, D.

J. Garcia-Sucerquia, J. A. Herrera Ramirez, R. Castafieda, and D. Velasquez Prieto, "Reduction of speckle noise in digital holography," Proc. SPIE 5622, 1359-1364 (2004).
[CrossRef]

Wagner, C.

Yoneyama, S.

S. Takao, S. Yoneyama and M. Takashi, "Minute displacement and strain analysis using lensless Fourier transformed holographic interferometry," Opt. Lasers Eng. 38, 233-244 (2002).
[CrossRef]

Zhang, Y.

Y. Zhang, Q. Lü, B. Ge, H. Zhao, and Y. Sun, "Digital holography and its application," Proc. SPIE 5636, 200-211 (2005).
[CrossRef]

Zhao, H.

Y. Zhang, Q. Lü, B. Ge, H. Zhao, and Y. Sun, "Digital holography and its application," Proc. SPIE 5636, 200-211 (2005).
[CrossRef]

Zhao, J.

Q. Fan and J. Zhao, "Resolution analysis of digital holography," Proc. SPIE 6027, 905-910 (2006).

Appl. Opt. (3)

Meas. Sci. Technol. (1)

U. Schnars and WPO. Juptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, 85-101 (2002).
[CrossRef]

Opt. Comm. (1)

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, "Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength," Opt. Commun. 260, 113-116 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lasers Engin. (2)

S. Takao, S. Yoneyama and M. Takashi, "Minute displacement and strain analysis using lensless Fourier transformed holographic interferometry," Opt. Lasers Eng. 38, 233-244 (2002).
[CrossRef]

D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H H. Scheld, and G. von bally, "Lensless Fourier holography for digital holographic interferometry on biological samples," Opt. Lasers Eng. 36, 241-249 (2001).
[CrossRef]

Opt. lett. (1)

Proc. SPIE (3)

Y. Zhang, Q. Lü, B. Ge, H. Zhao, and Y. Sun, "Digital holography and its application," Proc. SPIE 5636, 200-211 (2005).
[CrossRef]

Q. Fan and J. Zhao, "Resolution analysis of digital holography," Proc. SPIE 6027, 905-910 (2006).

J. Garcia-Sucerquia, J. A. Herrera Ramirez, R. Castafieda, and D. Velasquez Prieto, "Reduction of speckle noise in digital holography," Proc. SPIE 5622, 1359-1364 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental set-up for recording digital lensless Fourier transform hologram. M: mirror; BE: beam-expander; BS: beam-splitter.

Fig. 2.
Fig. 2.

Reconstruction results of a color piggy model by using digital lensless Fourier transform holography with multi-wavelengths. (a) λ 1=632.8nm, D 1=45cm; (b) λ 2=532nm, D 2=46cm; (c) λ 3=473nm, D 3=47cm; (d) Red appending-zeros hologram; (e) Green appending-zeros hologram (f) Color fusion of (c),(d) and (e).

Fig. 3.
Fig. 3.

Improvement results of the reconstructed monochromatic image. (a) Without any disposal; (b) Median filtering; (c) Superposition of the speckle fields with different recording distance; (d) Superposition of the speckle fields with different illuminating light field; (e) General disposal.

Fig. 4.
Fig. 4.

Improvement of the color holographic image. (a) Improved red holographic image; (b) Improved green holographic image; (c) Improved blue holographic image; (d) Fused color holographic image; (e) Part magnification of (d); (f) The recorded color object.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N 1 N 2 = λ 1 D 1 λ 2 D 2 ,
Δ x = λ D M Δ x H , Δ y = λ D N Δ y H

Metrics