Abstract

The emission intensity of Ni2+ at 1200 nm in transparent ZnO-Al2O3-SiO2 glass ceramics containing ZnAl2O4 nanocrystals is improved approximately 8 times by Cr3+ codoping with 532 nm excitation. This enhanced emission could be attributed to an efficient energy transfer from Cr3+ to Ni2+, which is confirmed by time-resolved emission spectra. The energy transfer efficiency is estimated to be 57% and the energy transfer mechanism is also discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. A. Smirnov and L. A. Shcherbakov, "Rare-earth scandium chromium garnets as active media for solid-state lasers," IEEE J. Quantum Electron. 24, 949-959 (1988).
    [CrossRef]
  2. P. F. Moulton, J. G. Manni, and G. A. Rines, "Spectroscopic and laser characteristics of Er,Cr:YSGG," IEEE J. Quantum Electron. 24, 960-973 (1988).
    [CrossRef]
  3. Y. Chen, C. Shi, W. Yan, Z. Qi, and Y. Fu, "Energy transfer between Pr3+ and Mn2+ in SrB4O7:Pr, Mn," Appl. Phys. Lett. 88, 061906 (2006).
    [CrossRef]
  4. J. A. Mares, W. Nie, and G. Boulon, "Energy transfer processes between various Cr3+ and Nd3+ multisites in YAG:Nd, Cr," J. Lumin. 48&49, 227-231 (1991).
    [CrossRef]
  5. R. Balda, J. Fernández, A. de Pablos, and J. M. Fernández-Navarro, "Cr3+ ? Nd3+ energy transfer in fluorophosphate glass investigate by time-resolved spectroscopy," Phys. Rev. B 48, 2941-2947 (1993).
    [CrossRef]
  6. P. Hong, X. X. Zhang, C. W. Struck, and B. Di Bartolo, "Luminescence of Cr3+ and energy transfer between Cr3+ and Nd3+ ions in yttrium aluminum garnet," J. Appl. Phys. 78, 4659-4667 (1995).
    [CrossRef]
  7. Z. Nie, J. Zhang, X. Zhang, and X. Ren, "Evidence for visible quantum cutting via energy transfer in SrAl12O19:Pr,Cr," Opt. Lett. 32, 991-993 (2007).
    [CrossRef] [PubMed]
  8. B. N. Samson, L. R. Pinckney, J. Wang, G. H. Beall, and N. F. Borrelli, "Nickel-doped nanocrystalline glass-ceramics fiber," Opt. Lett. 27, 1309-1311 (2002).
    [CrossRef]
  9. T. Suzuki, G. S. Murugan, and Y. Ohishi, "Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals," Appl. Phys. Lett. 86, 131903 (2005).
    [CrossRef]
  10. T. Suzuki, K. Horibuchi and Y. Ohishi, "Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics containing Ni2+-doped nanocrystals", J. Non-Crystal.Solids 351, 2304-2309 (2005).
    [CrossRef]
  11. B. Wu, S. Zhou, J. Ren, D. Chen, X. Jiang, C. Zhu, J. Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped ?-Ga2O3 nanocrystals," Appl. Phys. B 87, 697-699 (2007).
    [CrossRef]
  12. I. Yamaguchi, K. Tanaka, K. Hirao, and N. Soga, "Preparation and optical properties of transparent glass-ceramics containing LiGa5O8: Cr3+," J. Mater. Sci. 31, 3541-3547 (1996).
  13. M. Yu. Sharonov, A. B. Bykov, S. Owen, V. Pertricevic, R. R. Alfano, G. H. Beall, and N. Borrelli, "Spectroscopic study of transparent forsterite nanocrystalline glass-ceramics doped with chromium," J. Opt. Soc. Am. B 21, 2046-2052 (2004).
    [CrossRef]
  14. T. Ishihara, K. Tanaka, K. Hirao, and N. Soga, "Microstructure and optical absorption spectra of transparent glass-ceramics containing ZnAl2O4: Cr3+," Jpn. J. Soc. Mater. Sci. 42, 484-489 (1993).
    [CrossRef]
  15. S. García-Revilla, P. G.erner, H. U. Güdel, and R. Valiente, "Yb3+-sensitized visible Ni2+ photon upconversion in codoped CsCdBr3 and CsMgBr3," Phys. Rev. B 72, 125111 (2005).
    [CrossRef]
  16. D. L. Dexter, "A theory of sensitized luminescence in solids," J. Chem. Phys. 21, 836-850 (1953).
    [CrossRef]

2007 (2)

Z. Nie, J. Zhang, X. Zhang, and X. Ren, "Evidence for visible quantum cutting via energy transfer in SrAl12O19:Pr,Cr," Opt. Lett. 32, 991-993 (2007).
[CrossRef] [PubMed]

B. Wu, S. Zhou, J. Ren, D. Chen, X. Jiang, C. Zhu, J. Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped ?-Ga2O3 nanocrystals," Appl. Phys. B 87, 697-699 (2007).
[CrossRef]

2006 (1)

Y. Chen, C. Shi, W. Yan, Z. Qi, and Y. Fu, "Energy transfer between Pr3+ and Mn2+ in SrB4O7:Pr, Mn," Appl. Phys. Lett. 88, 061906 (2006).
[CrossRef]

2005 (3)

T. Suzuki, G. S. Murugan, and Y. Ohishi, "Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals," Appl. Phys. Lett. 86, 131903 (2005).
[CrossRef]

T. Suzuki, K. Horibuchi and Y. Ohishi, "Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics containing Ni2+-doped nanocrystals", J. Non-Crystal.Solids 351, 2304-2309 (2005).
[CrossRef]

S. García-Revilla, P. G.erner, H. U. Güdel, and R. Valiente, "Yb3+-sensitized visible Ni2+ photon upconversion in codoped CsCdBr3 and CsMgBr3," Phys. Rev. B 72, 125111 (2005).
[CrossRef]

2004 (1)

2002 (1)

1996 (1)

I. Yamaguchi, K. Tanaka, K. Hirao, and N. Soga, "Preparation and optical properties of transparent glass-ceramics containing LiGa5O8: Cr3+," J. Mater. Sci. 31, 3541-3547 (1996).

1995 (1)

P. Hong, X. X. Zhang, C. W. Struck, and B. Di Bartolo, "Luminescence of Cr3+ and energy transfer between Cr3+ and Nd3+ ions in yttrium aluminum garnet," J. Appl. Phys. 78, 4659-4667 (1995).
[CrossRef]

1993 (2)

T. Ishihara, K. Tanaka, K. Hirao, and N. Soga, "Microstructure and optical absorption spectra of transparent glass-ceramics containing ZnAl2O4: Cr3+," Jpn. J. Soc. Mater. Sci. 42, 484-489 (1993).
[CrossRef]

R. Balda, J. Fernández, A. de Pablos, and J. M. Fernández-Navarro, "Cr3+ ? Nd3+ energy transfer in fluorophosphate glass investigate by time-resolved spectroscopy," Phys. Rev. B 48, 2941-2947 (1993).
[CrossRef]

1988 (2)

V. A. Smirnov and L. A. Shcherbakov, "Rare-earth scandium chromium garnets as active media for solid-state lasers," IEEE J. Quantum Electron. 24, 949-959 (1988).
[CrossRef]

P. F. Moulton, J. G. Manni, and G. A. Rines, "Spectroscopic and laser characteristics of Er,Cr:YSGG," IEEE J. Quantum Electron. 24, 960-973 (1988).
[CrossRef]

1953 (1)

D. L. Dexter, "A theory of sensitized luminescence in solids," J. Chem. Phys. 21, 836-850 (1953).
[CrossRef]

Alfano, R. R.

Balda, R.

R. Balda, J. Fernández, A. de Pablos, and J. M. Fernández-Navarro, "Cr3+ ? Nd3+ energy transfer in fluorophosphate glass investigate by time-resolved spectroscopy," Phys. Rev. B 48, 2941-2947 (1993).
[CrossRef]

Beall, G. H.

Borrelli, N.

Borrelli, N. F.

Boulon, G.

J. A. Mares, W. Nie, and G. Boulon, "Energy transfer processes between various Cr3+ and Nd3+ multisites in YAG:Nd, Cr," J. Lumin. 48&49, 227-231 (1991).
[CrossRef]

Bykov, A. B.

Chen, D.

B. Wu, S. Zhou, J. Ren, D. Chen, X. Jiang, C. Zhu, J. Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped ?-Ga2O3 nanocrystals," Appl. Phys. B 87, 697-699 (2007).
[CrossRef]

Chen, Y.

Y. Chen, C. Shi, W. Yan, Z. Qi, and Y. Fu, "Energy transfer between Pr3+ and Mn2+ in SrB4O7:Pr, Mn," Appl. Phys. Lett. 88, 061906 (2006).
[CrossRef]

de Pablos, A.

R. Balda, J. Fernández, A. de Pablos, and J. M. Fernández-Navarro, "Cr3+ ? Nd3+ energy transfer in fluorophosphate glass investigate by time-resolved spectroscopy," Phys. Rev. B 48, 2941-2947 (1993).
[CrossRef]

Dexter, D. L.

D. L. Dexter, "A theory of sensitized luminescence in solids," J. Chem. Phys. 21, 836-850 (1953).
[CrossRef]

Di Bartolo, B.

P. Hong, X. X. Zhang, C. W. Struck, and B. Di Bartolo, "Luminescence of Cr3+ and energy transfer between Cr3+ and Nd3+ ions in yttrium aluminum garnet," J. Appl. Phys. 78, 4659-4667 (1995).
[CrossRef]

Fernández, J.

R. Balda, J. Fernández, A. de Pablos, and J. M. Fernández-Navarro, "Cr3+ ? Nd3+ energy transfer in fluorophosphate glass investigate by time-resolved spectroscopy," Phys. Rev. B 48, 2941-2947 (1993).
[CrossRef]

Fernández-Navarro, J. M.

R. Balda, J. Fernández, A. de Pablos, and J. M. Fernández-Navarro, "Cr3+ ? Nd3+ energy transfer in fluorophosphate glass investigate by time-resolved spectroscopy," Phys. Rev. B 48, 2941-2947 (1993).
[CrossRef]

Fu, Y.

Y. Chen, C. Shi, W. Yan, Z. Qi, and Y. Fu, "Energy transfer between Pr3+ and Mn2+ in SrB4O7:Pr, Mn," Appl. Phys. Lett. 88, 061906 (2006).
[CrossRef]

García-Revilla, S.

S. García-Revilla, P. G.erner, H. U. Güdel, and R. Valiente, "Yb3+-sensitized visible Ni2+ photon upconversion in codoped CsCdBr3 and CsMgBr3," Phys. Rev. B 72, 125111 (2005).
[CrossRef]

Hirao, K.

I. Yamaguchi, K. Tanaka, K. Hirao, and N. Soga, "Preparation and optical properties of transparent glass-ceramics containing LiGa5O8: Cr3+," J. Mater. Sci. 31, 3541-3547 (1996).

T. Ishihara, K. Tanaka, K. Hirao, and N. Soga, "Microstructure and optical absorption spectra of transparent glass-ceramics containing ZnAl2O4: Cr3+," Jpn. J. Soc. Mater. Sci. 42, 484-489 (1993).
[CrossRef]

Hong, P.

P. Hong, X. X. Zhang, C. W. Struck, and B. Di Bartolo, "Luminescence of Cr3+ and energy transfer between Cr3+ and Nd3+ ions in yttrium aluminum garnet," J. Appl. Phys. 78, 4659-4667 (1995).
[CrossRef]

Horibuchi, K.

T. Suzuki, K. Horibuchi and Y. Ohishi, "Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics containing Ni2+-doped nanocrystals", J. Non-Crystal.Solids 351, 2304-2309 (2005).
[CrossRef]

Ishihara, T.

T. Ishihara, K. Tanaka, K. Hirao, and N. Soga, "Microstructure and optical absorption spectra of transparent glass-ceramics containing ZnAl2O4: Cr3+," Jpn. J. Soc. Mater. Sci. 42, 484-489 (1993).
[CrossRef]

Jiang, X.

B. Wu, S. Zhou, J. Ren, D. Chen, X. Jiang, C. Zhu, J. Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped ?-Ga2O3 nanocrystals," Appl. Phys. B 87, 697-699 (2007).
[CrossRef]

Manni, J. G.

P. F. Moulton, J. G. Manni, and G. A. Rines, "Spectroscopic and laser characteristics of Er,Cr:YSGG," IEEE J. Quantum Electron. 24, 960-973 (1988).
[CrossRef]

Mares, J. A.

J. A. Mares, W. Nie, and G. Boulon, "Energy transfer processes between various Cr3+ and Nd3+ multisites in YAG:Nd, Cr," J. Lumin. 48&49, 227-231 (1991).
[CrossRef]

Moulton, P. F.

P. F. Moulton, J. G. Manni, and G. A. Rines, "Spectroscopic and laser characteristics of Er,Cr:YSGG," IEEE J. Quantum Electron. 24, 960-973 (1988).
[CrossRef]

Murugan, G. S.

T. Suzuki, G. S. Murugan, and Y. Ohishi, "Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals," Appl. Phys. Lett. 86, 131903 (2005).
[CrossRef]

Nie, W.

J. A. Mares, W. Nie, and G. Boulon, "Energy transfer processes between various Cr3+ and Nd3+ multisites in YAG:Nd, Cr," J. Lumin. 48&49, 227-231 (1991).
[CrossRef]

Nie, Z.

Ohishi, Y.

T. Suzuki, K. Horibuchi and Y. Ohishi, "Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics containing Ni2+-doped nanocrystals", J. Non-Crystal.Solids 351, 2304-2309 (2005).
[CrossRef]

T. Suzuki, G. S. Murugan, and Y. Ohishi, "Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals," Appl. Phys. Lett. 86, 131903 (2005).
[CrossRef]

Owen, S.

Pertricevic, V.

Pinckney, L. R.

Qi, Z.

Y. Chen, C. Shi, W. Yan, Z. Qi, and Y. Fu, "Energy transfer between Pr3+ and Mn2+ in SrB4O7:Pr, Mn," Appl. Phys. Lett. 88, 061906 (2006).
[CrossRef]

Qiu, J.

B. Wu, S. Zhou, J. Ren, D. Chen, X. Jiang, C. Zhu, J. Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped ?-Ga2O3 nanocrystals," Appl. Phys. B 87, 697-699 (2007).
[CrossRef]

Ren, J.

B. Wu, S. Zhou, J. Ren, D. Chen, X. Jiang, C. Zhu, J. Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped ?-Ga2O3 nanocrystals," Appl. Phys. B 87, 697-699 (2007).
[CrossRef]

Ren, X.

Rines, G. A.

P. F. Moulton, J. G. Manni, and G. A. Rines, "Spectroscopic and laser characteristics of Er,Cr:YSGG," IEEE J. Quantum Electron. 24, 960-973 (1988).
[CrossRef]

Samson, B. N.

Sharonov, M. Yu.

Shcherbakov, L. A.

V. A. Smirnov and L. A. Shcherbakov, "Rare-earth scandium chromium garnets as active media for solid-state lasers," IEEE J. Quantum Electron. 24, 949-959 (1988).
[CrossRef]

Shi, C.

Y. Chen, C. Shi, W. Yan, Z. Qi, and Y. Fu, "Energy transfer between Pr3+ and Mn2+ in SrB4O7:Pr, Mn," Appl. Phys. Lett. 88, 061906 (2006).
[CrossRef]

Smirnov, V. A.

V. A. Smirnov and L. A. Shcherbakov, "Rare-earth scandium chromium garnets as active media for solid-state lasers," IEEE J. Quantum Electron. 24, 949-959 (1988).
[CrossRef]

Soga, N.

I. Yamaguchi, K. Tanaka, K. Hirao, and N. Soga, "Preparation and optical properties of transparent glass-ceramics containing LiGa5O8: Cr3+," J. Mater. Sci. 31, 3541-3547 (1996).

T. Ishihara, K. Tanaka, K. Hirao, and N. Soga, "Microstructure and optical absorption spectra of transparent glass-ceramics containing ZnAl2O4: Cr3+," Jpn. J. Soc. Mater. Sci. 42, 484-489 (1993).
[CrossRef]

Struck, C. W.

P. Hong, X. X. Zhang, C. W. Struck, and B. Di Bartolo, "Luminescence of Cr3+ and energy transfer between Cr3+ and Nd3+ ions in yttrium aluminum garnet," J. Appl. Phys. 78, 4659-4667 (1995).
[CrossRef]

Suzuki, T.

T. Suzuki, G. S. Murugan, and Y. Ohishi, "Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals," Appl. Phys. Lett. 86, 131903 (2005).
[CrossRef]

T. Suzuki, K. Horibuchi and Y. Ohishi, "Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics containing Ni2+-doped nanocrystals", J. Non-Crystal.Solids 351, 2304-2309 (2005).
[CrossRef]

Tanaka, K.

I. Yamaguchi, K. Tanaka, K. Hirao, and N. Soga, "Preparation and optical properties of transparent glass-ceramics containing LiGa5O8: Cr3+," J. Mater. Sci. 31, 3541-3547 (1996).

T. Ishihara, K. Tanaka, K. Hirao, and N. Soga, "Microstructure and optical absorption spectra of transparent glass-ceramics containing ZnAl2O4: Cr3+," Jpn. J. Soc. Mater. Sci. 42, 484-489 (1993).
[CrossRef]

Wang, J.

Wu, B.

B. Wu, S. Zhou, J. Ren, D. Chen, X. Jiang, C. Zhu, J. Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped ?-Ga2O3 nanocrystals," Appl. Phys. B 87, 697-699 (2007).
[CrossRef]

Yamaguchi, I.

I. Yamaguchi, K. Tanaka, K. Hirao, and N. Soga, "Preparation and optical properties of transparent glass-ceramics containing LiGa5O8: Cr3+," J. Mater. Sci. 31, 3541-3547 (1996).

Yan, W.

Y. Chen, C. Shi, W. Yan, Z. Qi, and Y. Fu, "Energy transfer between Pr3+ and Mn2+ in SrB4O7:Pr, Mn," Appl. Phys. Lett. 88, 061906 (2006).
[CrossRef]

Zhang, J.

Zhang, X.

Zhang, X. X.

P. Hong, X. X. Zhang, C. W. Struck, and B. Di Bartolo, "Luminescence of Cr3+ and energy transfer between Cr3+ and Nd3+ ions in yttrium aluminum garnet," J. Appl. Phys. 78, 4659-4667 (1995).
[CrossRef]

Zhou, S.

B. Wu, S. Zhou, J. Ren, D. Chen, X. Jiang, C. Zhu, J. Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped ?-Ga2O3 nanocrystals," Appl. Phys. B 87, 697-699 (2007).
[CrossRef]

Zhu, C.

B. Wu, S. Zhou, J. Ren, D. Chen, X. Jiang, C. Zhu, J. Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped ?-Ga2O3 nanocrystals," Appl. Phys. B 87, 697-699 (2007).
[CrossRef]

Appl. Phys. B (1)

B. Wu, S. Zhou, J. Ren, D. Chen, X. Jiang, C. Zhu, J. Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped ?-Ga2O3 nanocrystals," Appl. Phys. B 87, 697-699 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Chen, C. Shi, W. Yan, Z. Qi, and Y. Fu, "Energy transfer between Pr3+ and Mn2+ in SrB4O7:Pr, Mn," Appl. Phys. Lett. 88, 061906 (2006).
[CrossRef]

T. Suzuki, G. S. Murugan, and Y. Ohishi, "Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals," Appl. Phys. Lett. 86, 131903 (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

V. A. Smirnov and L. A. Shcherbakov, "Rare-earth scandium chromium garnets as active media for solid-state lasers," IEEE J. Quantum Electron. 24, 949-959 (1988).
[CrossRef]

P. F. Moulton, J. G. Manni, and G. A. Rines, "Spectroscopic and laser characteristics of Er,Cr:YSGG," IEEE J. Quantum Electron. 24, 960-973 (1988).
[CrossRef]

J. Appl. Phys. (1)

P. Hong, X. X. Zhang, C. W. Struck, and B. Di Bartolo, "Luminescence of Cr3+ and energy transfer between Cr3+ and Nd3+ ions in yttrium aluminum garnet," J. Appl. Phys. 78, 4659-4667 (1995).
[CrossRef]

J. Chem. Phys. (1)

D. L. Dexter, "A theory of sensitized luminescence in solids," J. Chem. Phys. 21, 836-850 (1953).
[CrossRef]

J. Mater. Sci. (1)

I. Yamaguchi, K. Tanaka, K. Hirao, and N. Soga, "Preparation and optical properties of transparent glass-ceramics containing LiGa5O8: Cr3+," J. Mater. Sci. 31, 3541-3547 (1996).

J. Opt. Soc. Am. B (1)

Jpn. J. Soc. Mater. Sci. (1)

T. Ishihara, K. Tanaka, K. Hirao, and N. Soga, "Microstructure and optical absorption spectra of transparent glass-ceramics containing ZnAl2O4: Cr3+," Jpn. J. Soc. Mater. Sci. 42, 484-489 (1993).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (2)

S. García-Revilla, P. G.erner, H. U. Güdel, and R. Valiente, "Yb3+-sensitized visible Ni2+ photon upconversion in codoped CsCdBr3 and CsMgBr3," Phys. Rev. B 72, 125111 (2005).
[CrossRef]

R. Balda, J. Fernández, A. de Pablos, and J. M. Fernández-Navarro, "Cr3+ ? Nd3+ energy transfer in fluorophosphate glass investigate by time-resolved spectroscopy," Phys. Rev. B 48, 2941-2947 (1993).
[CrossRef]

Solids (1)

T. Suzuki, K. Horibuchi and Y. Ohishi, "Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics containing Ni2+-doped nanocrystals", J. Non-Crystal.Solids 351, 2304-2309 (2005).
[CrossRef]

Other (1)

J. A. Mares, W. Nie, and G. Boulon, "Energy transfer processes between various Cr3+ and Nd3+ multisites in YAG:Nd, Cr," J. Lumin. 48&49, 227-231 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

XRD patterns of Cr3+/Ni2+ co-doped glass and GC.

Fig. 2.
Fig. 2.

Optical absorption spectra of Cr3+ (a), Ni2+ (b) and Cr3+/Ni2+ (c) doped glasses (solid line) and GCs (short dot line).

Fig. 3.
Fig. 3.

Steady-state near-infrared emission spectra of Cr3+ (solid line), Ni2+ (short dash line) and Cr3+/Ni2+ (short dot line) doped GCs with 532 nm excitation. The emission curves were normalized to the third order diffraction. The inset shows intense red emission at 707 nm from zero-phonon line of 2E 4A2 transition of octahedral Cr3+ in Cr3+ (solid line) single- and Cr3+/Ni2+ (short dot line) co-doped GCs excited with 532 nm.

Fig. 4.
Fig. 4.

(Color online) Time-resolved emission spectra of Cr3+/Ni2+ co-doped GC taken at different time interval (between 0 and 982 µs). The spectra are scaled and vertically shifted for better visualization. Measurements were performed at room temperature and the excitation wavelength was 532 nm.

Fig. 5.
Fig. 5.

Energy level diagram of Cr3+/Ni2+ co-doped ZAS GCs which exhibits Cr3+→Ni2+ energy transfer (ET). Solid and dash arrow lines represent the respective radiative processes and nonradiative processes. The 2E energy level is embedded into the 4T2 energy level.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η=1 τ Cr / τ Cr(0)

Metrics