Abstract

We demonstrate a new reflective imaging technique using continuous-wave THz fiber-endoscopy, in which the sample is placed behind the output of a THz subwavelength plastic fiber and the Fabry Perot interference is formed therein. 3D THz reflective images with a reasonable SNR as well as high lateral and subwavelength axial resolutions are acquired by moving the sample along the axial (z) direction and by 2D scanning the output end of the subwavelength plastic fiber without any focusing medium. By analyzing the axial-position dependent THz signals backward collected by the subwavelength plastic fiber, the THz reflection amplitudes and phases on the sample surface can be successfully reconstructed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, and X.-C. Zhang, "Spectroscopic characterization of explosives in the far infrared region," SPIE Defense and Security Symp. #5411-2 (2004).
  2. B. S. Ferguson, H. Liu, S. Hay, D. Findlay, X.-C. Zhang, and D. Abbott, "In vitro osteosarcoma biosensing using THz time domain spectroscopy," Proc. SPIE—Int. Soc. Opt. Eng. 5275, 304 (2004).
  3. K. McClatchey, M. T. Reiten, and R. A. Cheville, "Time resolved synthetic aperture terahertz impulse imaging," Appl. Phys. Lett. 79, 4485-4487 (2001).
    [CrossRef]
  4. J. Pearce and D. Mittleman "Propagation of single-cycle terahertz pulses in random media," Opt. Lett. 26, 2002 (2001).
    [CrossRef]
  5. R. A. Cheville, R. Wand. McGowan, and D. Grischkowsky, "Time resolved measurements which isolate the mechanisms responsible for terahertz glory scattering from dielectric spheres," Phys. Rev. Lett. 80, 269 (1998).
    [CrossRef]
  6. K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, "All-optoelectronic continuous wave THz imaging for biomedical applications" Phys. Med. Biol. 47, 3743 (2002).
    [CrossRef] [PubMed]
  7. SiegelPH , DenglerRJ , "Terahertz heterodyne imaging Part II: Instruments" Int. J. Infrared Millimeter Waves 27, 631 (2006).
  8. A. Bandyopadhyay, A. Stepanov, B. Schulkin, M. D. Federici, A. Sengupta, D. Gary, J. F. Federici, R. Barat, Z. -H. Michalopoulou, and D. Zimdars, "Terahertz interferometric and synthetic aperture imaging," J. Opt. Soc. Am. A 23, 1168 (2006).
    [CrossRef]
  9. H.-W. Chen, J.-Y. Lu, L.-J. Chen, P.-J. Chiang, H.-C. Chang, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "THz Fiber Directional Coupler," Proc. CLEO/QELS’2007, Baltimore, MD, USA (2007).
  10. T.W. Crowe, W. L. Bishop, D. W. Porterfield, J. L. Hesler, and R. M. Weikle, "Opening the terahertz. window with integrated diode circuits," IEEE J. Solid States Circuits. 40, 2104-2110 (2005).
    [CrossRef]
  11. J. E. Carlstrom, R. L. Plambeck, and D. D. Thornton, "A continuously Tunable 65-115 GHz Gunn Oscillator," IEEE Trans. Microwave Theory and Tech. 33, 610-619 (1985).
    [CrossRef]
  12. J.-Y. Lu, C.-M. Chiu, C.-Cu Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and Chi-Kuang Sun, "Terahertz scanning imaging with a subwavelength plastic fiber," revised version submitted to Appl. Phys. Lett..
    [PubMed]
  13. B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, "Contras of Microwave Near-field Microscopy," Appl. Phys. Lett. 70, 2667-2669 (1997).
    [CrossRef]
  14. T. Taubner, F. Keilmann, and R. Hillenbrand, "Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy," Opt. Express 13, 8893-8899 (2005).
    [CrossRef] [PubMed]
  15. A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis, " Broadband dielectric microwave microscopy on micron length scales," Rev. Sci. Instrum. 78, 044701 (2007).
    [CrossRef] [PubMed]
  16. D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. B 68, 1085-1094 (1999).
    [CrossRef]

2007

A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis, " Broadband dielectric microwave microscopy on micron length scales," Rev. Sci. Instrum. 78, 044701 (2007).
[CrossRef] [PubMed]

2006

2005

T.W. Crowe, W. L. Bishop, D. W. Porterfield, J. L. Hesler, and R. M. Weikle, "Opening the terahertz. window with integrated diode circuits," IEEE J. Solid States Circuits. 40, 2104-2110 (2005).
[CrossRef]

T. Taubner, F. Keilmann, and R. Hillenbrand, "Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy," Opt. Express 13, 8893-8899 (2005).
[CrossRef] [PubMed]

2002

K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, "All-optoelectronic continuous wave THz imaging for biomedical applications" Phys. Med. Biol. 47, 3743 (2002).
[CrossRef] [PubMed]

2001

K. McClatchey, M. T. Reiten, and R. A. Cheville, "Time resolved synthetic aperture terahertz impulse imaging," Appl. Phys. Lett. 79, 4485-4487 (2001).
[CrossRef]

J. Pearce and D. Mittleman "Propagation of single-cycle terahertz pulses in random media," Opt. Lett. 26, 2002 (2001).
[CrossRef]

1999

D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. B 68, 1085-1094 (1999).
[CrossRef]

1998

R. A. Cheville, R. Wand. McGowan, and D. Grischkowsky, "Time resolved measurements which isolate the mechanisms responsible for terahertz glory scattering from dielectric spheres," Phys. Rev. Lett. 80, 269 (1998).
[CrossRef]

1997

B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, "Contras of Microwave Near-field Microscopy," Appl. Phys. Lett. 70, 2667-2669 (1997).
[CrossRef]

1985

J. E. Carlstrom, R. L. Plambeck, and D. D. Thornton, "A continuously Tunable 65-115 GHz Gunn Oscillator," IEEE Trans. Microwave Theory and Tech. 33, 610-619 (1985).
[CrossRef]

Anlage, S. M.

A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis, " Broadband dielectric microwave microscopy on micron length scales," Rev. Sci. Instrum. 78, 044701 (2007).
[CrossRef] [PubMed]

Bandyopadhyay, A.

Baraniuk, R.G.

D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. B 68, 1085-1094 (1999).
[CrossRef]

Barat, R.

Bauer, T.

K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, "All-optoelectronic continuous wave THz imaging for biomedical applications" Phys. Med. Biol. 47, 3743 (2002).
[CrossRef] [PubMed]

Bishop, W. L.

T.W. Crowe, W. L. Bishop, D. W. Porterfield, J. L. Hesler, and R. M. Weikle, "Opening the terahertz. window with integrated diode circuits," IEEE J. Solid States Circuits. 40, 2104-2110 (2005).
[CrossRef]

Carlstrom, J. E.

J. E. Carlstrom, R. L. Plambeck, and D. D. Thornton, "A continuously Tunable 65-115 GHz Gunn Oscillator," IEEE Trans. Microwave Theory and Tech. 33, 610-619 (1985).
[CrossRef]

Cheville, R. A.

K. McClatchey, M. T. Reiten, and R. A. Cheville, "Time resolved synthetic aperture terahertz impulse imaging," Appl. Phys. Lett. 79, 4485-4487 (2001).
[CrossRef]

R. A. Cheville, R. Wand. McGowan, and D. Grischkowsky, "Time resolved measurements which isolate the mechanisms responsible for terahertz glory scattering from dielectric spheres," Phys. Rev. Lett. 80, 269 (1998).
[CrossRef]

Crowe, T.W.

T.W. Crowe, W. L. Bishop, D. W. Porterfield, J. L. Hesler, and R. M. Weikle, "Opening the terahertz. window with integrated diode circuits," IEEE J. Solid States Circuits. 40, 2104-2110 (2005).
[CrossRef]

Czasch, S.

K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, "All-optoelectronic continuous wave THz imaging for biomedical applications" Phys. Med. Biol. 47, 3743 (2002).
[CrossRef] [PubMed]

Dengler, PH

SiegelPH , DenglerRJ , "Terahertz heterodyne imaging Part II: Instruments" Int. J. Infrared Millimeter Waves 27, 631 (2006).

Federici, J. F.

Federici, M. D.

Gary, D.

Guckenberger, R.

B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, "Contras of Microwave Near-field Microscopy," Appl. Phys. Lett. 70, 2667-2669 (1997).
[CrossRef]

Gupta, M.

D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. B 68, 1085-1094 (1999).
[CrossRef]

Hesler, J. L.

T.W. Crowe, W. L. Bishop, D. W. Porterfield, J. L. Hesler, and R. M. Weikle, "Opening the terahertz. window with integrated diode circuits," IEEE J. Solid States Circuits. 40, 2104-2110 (2005).
[CrossRef]

Hillenbrand, R.

Keilmann, F.

T. Taubner, F. Keilmann, and R. Hillenbrand, "Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy," Opt. Express 13, 8893-8899 (2005).
[CrossRef] [PubMed]

B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, "Contras of Microwave Near-field Microscopy," Appl. Phys. Lett. 70, 2667-2669 (1997).
[CrossRef]

Knoll, B.

B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, "Contras of Microwave Near-field Microscopy," Appl. Phys. Lett. 70, 2667-2669 (1997).
[CrossRef]

Koch, M.

D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. B 68, 1085-1094 (1999).
[CrossRef]

Kramer, A.

B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, "Contras of Microwave Near-field Microscopy," Appl. Phys. Lett. 70, 2667-2669 (1997).
[CrossRef]

Leonhardt, R.

K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, "All-optoelectronic continuous wave THz imaging for biomedical applications" Phys. Med. Biol. 47, 3743 (2002).
[CrossRef] [PubMed]

Loffler, T.

K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, "All-optoelectronic continuous wave THz imaging for biomedical applications" Phys. Med. Biol. 47, 3743 (2002).
[CrossRef] [PubMed]

Ma, Z.

A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis, " Broadband dielectric microwave microscopy on micron length scales," Rev. Sci. Instrum. 78, 044701 (2007).
[CrossRef] [PubMed]

McClatchey, K.

K. McClatchey, M. T. Reiten, and R. A. Cheville, "Time resolved synthetic aperture terahertz impulse imaging," Appl. Phys. Lett. 79, 4485-4487 (2001).
[CrossRef]

Melngailis, J.

A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis, " Broadband dielectric microwave microscopy on micron length scales," Rev. Sci. Instrum. 78, 044701 (2007).
[CrossRef] [PubMed]

Michalopoulou, Z. -H.

Mittleman, D.

Mittleman, D.M.

D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. B 68, 1085-1094 (1999).
[CrossRef]

Neelamani, R.

D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. B 68, 1085-1094 (1999).
[CrossRef]

Pearce, J.

Plambeck, R. L.

J. E. Carlstrom, R. L. Plambeck, and D. D. Thornton, "A continuously Tunable 65-115 GHz Gunn Oscillator," IEEE Trans. Microwave Theory and Tech. 33, 610-619 (1985).
[CrossRef]

Porterfield, D. W.

T.W. Crowe, W. L. Bishop, D. W. Porterfield, J. L. Hesler, and R. M. Weikle, "Opening the terahertz. window with integrated diode circuits," IEEE J. Solid States Circuits. 40, 2104-2110 (2005).
[CrossRef]

Quast, H.

K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, "All-optoelectronic continuous wave THz imaging for biomedical applications" Phys. Med. Biol. 47, 3743 (2002).
[CrossRef] [PubMed]

Reiten, M. T.

K. McClatchey, M. T. Reiten, and R. A. Cheville, "Time resolved synthetic aperture terahertz impulse imaging," Appl. Phys. Lett. 79, 4485-4487 (2001).
[CrossRef]

Roskos, H. G.

K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, "All-optoelectronic continuous wave THz imaging for biomedical applications" Phys. Med. Biol. 47, 3743 (2002).
[CrossRef] [PubMed]

Rudd, J.V.

D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. B 68, 1085-1094 (1999).
[CrossRef]

Schulkin, B.

Sengupta, A.

Siebert, K.

K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, "All-optoelectronic continuous wave THz imaging for biomedical applications" Phys. Med. Biol. 47, 3743 (2002).
[CrossRef] [PubMed]

Siegel,

SiegelPH , DenglerRJ , "Terahertz heterodyne imaging Part II: Instruments" Int. J. Infrared Millimeter Waves 27, 631 (2006).

Stepanov, A.

Taubner, T.

Thomson, M.

K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, "All-optoelectronic continuous wave THz imaging for biomedical applications" Phys. Med. Biol. 47, 3743 (2002).
[CrossRef] [PubMed]

Thornton, D. D.

J. E. Carlstrom, R. L. Plambeck, and D. D. Thornton, "A continuously Tunable 65-115 GHz Gunn Oscillator," IEEE Trans. Microwave Theory and Tech. 33, 610-619 (1985).
[CrossRef]

Tselev, A.

A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis, " Broadband dielectric microwave microscopy on micron length scales," Rev. Sci. Instrum. 78, 044701 (2007).
[CrossRef] [PubMed]

Wand, R.

R. A. Cheville, R. Wand. McGowan, and D. Grischkowsky, "Time resolved measurements which isolate the mechanisms responsible for terahertz glory scattering from dielectric spheres," Phys. Rev. Lett. 80, 269 (1998).
[CrossRef]

Weikle, R. M.

T.W. Crowe, W. L. Bishop, D. W. Porterfield, J. L. Hesler, and R. M. Weikle, "Opening the terahertz. window with integrated diode circuits," IEEE J. Solid States Circuits. 40, 2104-2110 (2005).
[CrossRef]

Zimdars, D.

Appl. Phys. B

D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. B 68, 1085-1094 (1999).
[CrossRef]

Appl. Phys. Lett.

B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, "Contras of Microwave Near-field Microscopy," Appl. Phys. Lett. 70, 2667-2669 (1997).
[CrossRef]

K. McClatchey, M. T. Reiten, and R. A. Cheville, "Time resolved synthetic aperture terahertz impulse imaging," Appl. Phys. Lett. 79, 4485-4487 (2001).
[CrossRef]

IEEE J. Solid States Circuits.

T.W. Crowe, W. L. Bishop, D. W. Porterfield, J. L. Hesler, and R. M. Weikle, "Opening the terahertz. window with integrated diode circuits," IEEE J. Solid States Circuits. 40, 2104-2110 (2005).
[CrossRef]

IEEE Trans. Microwave Theory and Tech.

J. E. Carlstrom, R. L. Plambeck, and D. D. Thornton, "A continuously Tunable 65-115 GHz Gunn Oscillator," IEEE Trans. Microwave Theory and Tech. 33, 610-619 (1985).
[CrossRef]

Int. J. Infrared Millimeter Waves

SiegelPH , DenglerRJ , "Terahertz heterodyne imaging Part II: Instruments" Int. J. Infrared Millimeter Waves 27, 631 (2006).

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Phys. Med. Biol.

K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, "All-optoelectronic continuous wave THz imaging for biomedical applications" Phys. Med. Biol. 47, 3743 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett.

R. A. Cheville, R. Wand. McGowan, and D. Grischkowsky, "Time resolved measurements which isolate the mechanisms responsible for terahertz glory scattering from dielectric spheres," Phys. Rev. Lett. 80, 269 (1998).
[CrossRef]

Rev. Sci. Instrum.

A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis, " Broadband dielectric microwave microscopy on micron length scales," Rev. Sci. Instrum. 78, 044701 (2007).
[CrossRef] [PubMed]

Other

Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, and X.-C. Zhang, "Spectroscopic characterization of explosives in the far infrared region," SPIE Defense and Security Symp. #5411-2 (2004).

B. S. Ferguson, H. Liu, S. Hay, D. Findlay, X.-C. Zhang, and D. Abbott, "In vitro osteosarcoma biosensing using THz time domain spectroscopy," Proc. SPIE—Int. Soc. Opt. Eng. 5275, 304 (2004).

H.-W. Chen, J.-Y. Lu, L.-J. Chen, P.-J. Chiang, H.-C. Chang, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "THz Fiber Directional Coupler," Proc. CLEO/QELS’2007, Baltimore, MD, USA (2007).

J.-Y. Lu, C.-M. Chiu, C.-Cu Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and Chi-Kuang Sun, "Terahertz scanning imaging with a subwavelength plastic fiber," revised version submitted to Appl. Phys. Lett..
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the THz fiber endoscope system based on two subwavelength plastic fibers. (b) The result of the THz spot size measurement.

Fig. 2.
Fig. 2.

(a) The Golay cell measured THz reflection power by moving the glass spherical lens 1 along the z direction away from the imaging fiber tip and by fixing the fiber-tip at the central point of the lens. (b) and (c) show the 2D fiber-scanning THz reflective images of the glass spherical lens 1 by positioning the lens at the fixed z0 and z1 positions respectively, as labeled in (a). (d) 2D fiber-scanning THz reflective images of the glass spherical lens 2 by positioning the lens at the fixed z0 position.

Fig. 3.
Fig. 3.

Reconstructed 3D THz images of (a) lens 1 and (b) lens 2. Colors represent different magnitudes of the extracted reflection oscillation amplitude A. These images were acquired by the THz interferometric fiber-endoscope.

Fig. 4.
Fig. 4.

Reconstructed surface profile (black line) of lens 1 and its comparison with the lens maker formula (red line).

Fig. 5
Fig. 5

THz 2D image corresponding to the (a) extracted amplitude A and the (b) phase ϕ0 from the burned porcine skin. The ring-shaped burned area can be clearly identified. (c) The reconstructed 3D THz image of the burned porcine skin. Colors represent the extracted reflection oscillation amplitude A. This image was acquired by the THz interferometric fiber-endoscope. Inset shows the photo of the burned porcine skin. The THz reconstructed image matches well with the optical image.

Metrics