Abstract

We demonstrate a new reflective imaging technique using continuous-wave THz fiber-endoscopy, in which the sample is placed behind the output of a THz subwavelength plastic fiber and the Fabry Perot interference is formed therein. 3D THz reflective images with a reasonable SNR as well as high lateral and subwavelength axial resolutions are acquired by moving the sample along the axial (z) direction and by 2D scanning the output end of the subwavelength plastic fiber without any focusing medium. By analyzing the axial-position dependent THz signals backward collected by the subwavelength plastic fiber, the THz reflection amplitudes and phases on the sample surface can be successfully reconstructed.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Extension of the macroscopic model for reflection near-field microscopy: regularization and image formation

S. Bozhevolnyi, S. Berntsen, and E. Bozhevolnaya
J. Opt. Soc. Am. A 11(2) 609-617 (1994)

External-reflection near-field optical microscope with cross-polarized detection

S. I. Bozhevolnyi, M. Xiao, and O. Keller
Appl. Opt. 33(5) 876-880 (1994)

Apertureless near-field optical microscopy: influence of the illumination conditions on the image contrast

Pierre-Michel Adam, Pascal Royer, Reda Laddada, and Jean-Louis Bijeon
Appl. Opt. 37(10) 1814-1819 (1998)

References

  • View by:
  • |
  • |
  • |

  1. Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, and X.-C. Zhang, “Spectroscopic characterization of explosives in the far infrared region,” SPIE Defense and Security Symp. #5411–5412 (2004).
  2. B. S. Ferguson, H. Liu, S. Hay, D. Findlay, X.-C. Zhang, and D. Abbott, “In vitro osteosarcoma biosensing using THz time domain spectroscopy,” Proc. SPIE—Int. Soc. Opt. Eng. 5275, 304 (2004).
  3. K. McClatchey, M. T. Reiten, and R. A. Cheville, “Time resolved synthetic aperture terahertz impulse imaging,” Appl. Phys. Lett. 79, 4485–4487 (2001).
    [Crossref]
  4. J. Pearce and D. Mittleman “Propagation of single-cycle terahertz pulses in random media,” Opt. Lett. 26, 2002 (2001).
    [Crossref]
  5. R. A. Cheville, R.Wand. McGowan, and D. Grischkowsky, “Time resolved measurements which isolate the mechanisms responsible for terahertz glory scattering from dielectric spheres,” Phys. Rev. Lett. 80, 269 (1998).
    [Crossref]
  6. K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications” Phys. Med. Biol. 47, 3743 (2002).
    [Crossref] [PubMed]
  7. Siegel PH and Dengler RJ, “Terahertz heterodyne imaging Part II: Instruments” Int. J. Infrared Millimeter Waves 27, 631 (2006).
  8. A. Bandyopadhyay, A. Stepanov, B. Schulkin, M. D. Federici, A. Sengupta, D. Gary, J. F. Federici, R. Barat, Z. -H. Michalopoulou, and D. Zimdars, “Terahertz interferometric and synthetic aperture imaging,” J. Opt. Soc. Am. A 23, 1168 (2006).
    [Crossref]
  9. H.-W. Chen, J.-Y. Lu, L.-J. Chen, P.-J. Chiang, H.-C. Chang, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “THz Fiber Directional Coupler,” Proc. CLEO/QELS’2007, Baltimore, MD, USA (2007).
  10. T.W. Crowe, W. L. Bishop, D. W. Porterfield, J. L. Hesler, and R. M. Weikle, “Opening the terahertz. window with integrated diode circuits,” IEEE J. Solid States Circuits. 40, 2104–2110 (2005).
    [Crossref]
  11. J. E. Carlstrom, R. L. Plambeck, and D. D. Thornton, “A continuously Tunable 65–115 GHz Gunn Oscillator,” IEEE Trans. Microwave Theory and Tech. 33, 610–619 (1985).
    [Crossref]
  12. J.-Y. Lu, C.-M. Chiu, C.-C.u Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and Chi-Kuang Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” revised version submitted to Appl. Phys. Lett..
    [PubMed]
  13. B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, “Contras of Microwave Near-field Microscopy,” Appl. Phys. Lett. 70, 2667–2669 (1997).
    [Crossref]
  14. T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13, 8893–8899 (2005).
    [Crossref] [PubMed]
  15. A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis, “Broadband dielectric microwave microscopy on micron length scales,” Rev. Sci. Instrum. 78, 044701 (2007).
    [Crossref] [PubMed]
  16. D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
    [Crossref]

2007 (1)

A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis, “Broadband dielectric microwave microscopy on micron length scales,” Rev. Sci. Instrum. 78, 044701 (2007).
[Crossref] [PubMed]

2006 (1)

Siegel PH and Dengler RJ, “Terahertz heterodyne imaging Part II: Instruments” Int. J. Infrared Millimeter Waves 27, 631 (2006).

2005 (2)

T.W. Crowe, W. L. Bishop, D. W. Porterfield, J. L. Hesler, and R. M. Weikle, “Opening the terahertz. window with integrated diode circuits,” IEEE J. Solid States Circuits. 40, 2104–2110 (2005).
[Crossref]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13, 8893–8899 (2005).
[Crossref] [PubMed]

2004 (1)

B. S. Ferguson, H. Liu, S. Hay, D. Findlay, X.-C. Zhang, and D. Abbott, “In vitro osteosarcoma biosensing using THz time domain spectroscopy,” Proc. SPIE—Int. Soc. Opt. Eng. 5275, 304 (2004).

2002 (1)

K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications” Phys. Med. Biol. 47, 3743 (2002).
[Crossref] [PubMed]

2001 (2)

K. McClatchey, M. T. Reiten, and R. A. Cheville, “Time resolved synthetic aperture terahertz impulse imaging,” Appl. Phys. Lett. 79, 4485–4487 (2001).
[Crossref]

J. Pearce and D. Mittleman “Propagation of single-cycle terahertz pulses in random media,” Opt. Lett. 26, 2002 (2001).
[Crossref]

1999 (1)

D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

1998 (1)

R. A. Cheville, R.Wand. McGowan, and D. Grischkowsky, “Time resolved measurements which isolate the mechanisms responsible for terahertz glory scattering from dielectric spheres,” Phys. Rev. Lett. 80, 269 (1998).
[Crossref]

1997 (1)

B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, “Contras of Microwave Near-field Microscopy,” Appl. Phys. Lett. 70, 2667–2669 (1997).
[Crossref]

1985 (1)

J. E. Carlstrom, R. L. Plambeck, and D. D. Thornton, “A continuously Tunable 65–115 GHz Gunn Oscillator,” IEEE Trans. Microwave Theory and Tech. 33, 610–619 (1985).
[Crossref]

Abbott, D.

B. S. Ferguson, H. Liu, S. Hay, D. Findlay, X.-C. Zhang, and D. Abbott, “In vitro osteosarcoma biosensing using THz time domain spectroscopy,” Proc. SPIE—Int. Soc. Opt. Eng. 5275, 304 (2004).

Anlage, S. M.

A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis, “Broadband dielectric microwave microscopy on micron length scales,” Rev. Sci. Instrum. 78, 044701 (2007).
[Crossref] [PubMed]

Bandyopadhyay, A.

A. Bandyopadhyay, A. Stepanov, B. Schulkin, M. D. Federici, A. Sengupta, D. Gary, J. F. Federici, R. Barat, Z. -H. Michalopoulou, and D. Zimdars, “Terahertz interferometric and synthetic aperture imaging,” J. Opt. Soc. Am. A 23, 1168 (2006).
[Crossref]

Baraniuk, R.G.

D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Barat, R.

A. Bandyopadhyay, A. Stepanov, B. Schulkin, M. D. Federici, A. Sengupta, D. Gary, J. F. Federici, R. Barat, Z. -H. Michalopoulou, and D. Zimdars, “Terahertz interferometric and synthetic aperture imaging,” J. Opt. Soc. Am. A 23, 1168 (2006).
[Crossref]

Bauer, T.

K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications” Phys. Med. Biol. 47, 3743 (2002).
[Crossref] [PubMed]

Bishop, W. L.

T.W. Crowe, W. L. Bishop, D. W. Porterfield, J. L. Hesler, and R. M. Weikle, “Opening the terahertz. window with integrated diode circuits,” IEEE J. Solid States Circuits. 40, 2104–2110 (2005).
[Crossref]

Carlstrom, J. E.

J. E. Carlstrom, R. L. Plambeck, and D. D. Thornton, “A continuously Tunable 65–115 GHz Gunn Oscillator,” IEEE Trans. Microwave Theory and Tech. 33, 610–619 (1985).
[Crossref]

Chang, H.-C.

J.-Y. Lu, C.-M. Chiu, C.-C.u Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and Chi-Kuang Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” revised version submitted to Appl. Phys. Lett..
[PubMed]

H.-W. Chen, J.-Y. Lu, L.-J. Chen, P.-J. Chiang, H.-C. Chang, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “THz Fiber Directional Coupler,” Proc. CLEO/QELS’2007, Baltimore, MD, USA (2007).

Chen, H.-W.

H.-W. Chen, J.-Y. Lu, L.-J. Chen, P.-J. Chiang, H.-C. Chang, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “THz Fiber Directional Coupler,” Proc. CLEO/QELS’2007, Baltimore, MD, USA (2007).

Chen, L.-J.

H.-W. Chen, J.-Y. Lu, L.-J. Chen, P.-J. Chiang, H.-C. Chang, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “THz Fiber Directional Coupler,” Proc. CLEO/QELS’2007, Baltimore, MD, USA (2007).

Chen, Y.

Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, and X.-C. Zhang, “Spectroscopic characterization of explosives in the far infrared region,” SPIE Defense and Security Symp. #5411–5412 (2004).

Cheville, R. A.

K. McClatchey, M. T. Reiten, and R. A. Cheville, “Time resolved synthetic aperture terahertz impulse imaging,” Appl. Phys. Lett. 79, 4485–4487 (2001).
[Crossref]

R. A. Cheville, R.Wand. McGowan, and D. Grischkowsky, “Time resolved measurements which isolate the mechanisms responsible for terahertz glory scattering from dielectric spheres,” Phys. Rev. Lett. 80, 269 (1998).
[Crossref]

Chiang, P.-J.

H.-W. Chen, J.-Y. Lu, L.-J. Chen, P.-J. Chiang, H.-C. Chang, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “THz Fiber Directional Coupler,” Proc. CLEO/QELS’2007, Baltimore, MD, USA (2007).

Chiu, C.-M.

J.-Y. Lu, C.-M. Chiu, C.-C.u Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and Chi-Kuang Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” revised version submitted to Appl. Phys. Lett..
[PubMed]

Crowe, T.W.

T.W. Crowe, W. L. Bishop, D. W. Porterfield, J. L. Hesler, and R. M. Weikle, “Opening the terahertz. window with integrated diode circuits,” IEEE J. Solid States Circuits. 40, 2104–2110 (2005).
[Crossref]

Czasch, S.

K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications” Phys. Med. Biol. 47, 3743 (2002).
[Crossref] [PubMed]

Deng, Y.

Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, and X.-C. Zhang, “Spectroscopic characterization of explosives in the far infrared region,” SPIE Defense and Security Symp. #5411–5412 (2004).

Federici, J. F.

A. Bandyopadhyay, A. Stepanov, B. Schulkin, M. D. Federici, A. Sengupta, D. Gary, J. F. Federici, R. Barat, Z. -H. Michalopoulou, and D. Zimdars, “Terahertz interferometric and synthetic aperture imaging,” J. Opt. Soc. Am. A 23, 1168 (2006).
[Crossref]

Federici, M. D.

A. Bandyopadhyay, A. Stepanov, B. Schulkin, M. D. Federici, A. Sengupta, D. Gary, J. F. Federici, R. Barat, Z. -H. Michalopoulou, and D. Zimdars, “Terahertz interferometric and synthetic aperture imaging,” J. Opt. Soc. Am. A 23, 1168 (2006).
[Crossref]

Ferguson, B. S.

B. S. Ferguson, H. Liu, S. Hay, D. Findlay, X.-C. Zhang, and D. Abbott, “In vitro osteosarcoma biosensing using THz time domain spectroscopy,” Proc. SPIE—Int. Soc. Opt. Eng. 5275, 304 (2004).

Findlay, D.

B. S. Ferguson, H. Liu, S. Hay, D. Findlay, X.-C. Zhang, and D. Abbott, “In vitro osteosarcoma biosensing using THz time domain spectroscopy,” Proc. SPIE—Int. Soc. Opt. Eng. 5275, 304 (2004).

Gary, D.

A. Bandyopadhyay, A. Stepanov, B. Schulkin, M. D. Federici, A. Sengupta, D. Gary, J. F. Federici, R. Barat, Z. -H. Michalopoulou, and D. Zimdars, “Terahertz interferometric and synthetic aperture imaging,” J. Opt. Soc. Am. A 23, 1168 (2006).
[Crossref]

Grischkowsky, D.

R. A. Cheville, R.Wand. McGowan, and D. Grischkowsky, “Time resolved measurements which isolate the mechanisms responsible for terahertz glory scattering from dielectric spheres,” Phys. Rev. Lett. 80, 269 (1998).
[Crossref]

Guckenberger, R.

B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, “Contras of Microwave Near-field Microscopy,” Appl. Phys. Lett. 70, 2667–2669 (1997).
[Crossref]

Gupta, M.

D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Hay, S.

B. S. Ferguson, H. Liu, S. Hay, D. Findlay, X.-C. Zhang, and D. Abbott, “In vitro osteosarcoma biosensing using THz time domain spectroscopy,” Proc. SPIE—Int. Soc. Opt. Eng. 5275, 304 (2004).

Hesler, J. L.

T.W. Crowe, W. L. Bishop, D. W. Porterfield, J. L. Hesler, and R. M. Weikle, “Opening the terahertz. window with integrated diode circuits,” IEEE J. Solid States Circuits. 40, 2104–2110 (2005).
[Crossref]

Hillenbrand, R.

Hwang, Y.-J.

J.-Y. Lu, C.-M. Chiu, C.-C.u Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and Chi-Kuang Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” revised version submitted to Appl. Phys. Lett..
[PubMed]

Keilmann, F.

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13, 8893–8899 (2005).
[Crossref] [PubMed]

B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, “Contras of Microwave Near-field Microscopy,” Appl. Phys. Lett. 70, 2667–2669 (1997).
[Crossref]

Knoll, B.

B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, “Contras of Microwave Near-field Microscopy,” Appl. Phys. Lett. 70, 2667–2669 (1997).
[Crossref]

Koch, M.

D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Kramer, A.

B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, “Contras of Microwave Near-field Microscopy,” Appl. Phys. Lett. 70, 2667–2669 (1997).
[Crossref]

Kuo, C.-C.u

J.-Y. Lu, C.-M. Chiu, C.-C.u Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and Chi-Kuang Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” revised version submitted to Appl. Phys. Lett..
[PubMed]

Lai, C.-H.

J.-Y. Lu, C.-M. Chiu, C.-C.u Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and Chi-Kuang Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” revised version submitted to Appl. Phys. Lett..
[PubMed]

Leonhardt, R.

K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications” Phys. Med. Biol. 47, 3743 (2002).
[Crossref] [PubMed]

Li, Y.-T.

H.-W. Chen, J.-Y. Lu, L.-J. Chen, P.-J. Chiang, H.-C. Chang, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “THz Fiber Directional Coupler,” Proc. CLEO/QELS’2007, Baltimore, MD, USA (2007).

Liu, H.

B. S. Ferguson, H. Liu, S. Hay, D. Findlay, X.-C. Zhang, and D. Abbott, “In vitro osteosarcoma biosensing using THz time domain spectroscopy,” Proc. SPIE—Int. Soc. Opt. Eng. 5275, 304 (2004).

Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, and X.-C. Zhang, “Spectroscopic characterization of explosives in the far infrared region,” SPIE Defense and Security Symp. #5411–5412 (2004).

Loffler, T.

K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications” Phys. Med. Biol. 47, 3743 (2002).
[Crossref] [PubMed]

Lu, J.-Y.

H.-W. Chen, J.-Y. Lu, L.-J. Chen, P.-J. Chiang, H.-C. Chang, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “THz Fiber Directional Coupler,” Proc. CLEO/QELS’2007, Baltimore, MD, USA (2007).

J.-Y. Lu, C.-M. Chiu, C.-C.u Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and Chi-Kuang Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” revised version submitted to Appl. Phys. Lett..
[PubMed]

Ma, Z.

A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis, “Broadband dielectric microwave microscopy on micron length scales,” Rev. Sci. Instrum. 78, 044701 (2007).
[Crossref] [PubMed]

McClatchey, K.

K. McClatchey, M. T. Reiten, and R. A. Cheville, “Time resolved synthetic aperture terahertz impulse imaging,” Appl. Phys. Lett. 79, 4485–4487 (2001).
[Crossref]

McGowan, R.Wand.

R. A. Cheville, R.Wand. McGowan, and D. Grischkowsky, “Time resolved measurements which isolate the mechanisms responsible for terahertz glory scattering from dielectric spheres,” Phys. Rev. Lett. 80, 269 (1998).
[Crossref]

Melngailis, J.

A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis, “Broadband dielectric microwave microscopy on micron length scales,” Rev. Sci. Instrum. 78, 044701 (2007).
[Crossref] [PubMed]

Michalopoulou, Z. -H.

A. Bandyopadhyay, A. Stepanov, B. Schulkin, M. D. Federici, A. Sengupta, D. Gary, J. F. Federici, R. Barat, Z. -H. Michalopoulou, and D. Zimdars, “Terahertz interferometric and synthetic aperture imaging,” J. Opt. Soc. Am. A 23, 1168 (2006).
[Crossref]

Mittleman, D.

Mittleman, D.M.

D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Neelamani, R.

D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Pan, C.-L.

J.-Y. Lu, C.-M. Chiu, C.-C.u Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and Chi-Kuang Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” revised version submitted to Appl. Phys. Lett..
[PubMed]

H.-W. Chen, J.-Y. Lu, L.-J. Chen, P.-J. Chiang, H.-C. Chang, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “THz Fiber Directional Coupler,” Proc. CLEO/QELS’2007, Baltimore, MD, USA (2007).

Pearce, J.

PH, Siegel

Siegel PH and Dengler RJ, “Terahertz heterodyne imaging Part II: Instruments” Int. J. Infrared Millimeter Waves 27, 631 (2006).

Plambeck, R. L.

J. E. Carlstrom, R. L. Plambeck, and D. D. Thornton, “A continuously Tunable 65–115 GHz Gunn Oscillator,” IEEE Trans. Microwave Theory and Tech. 33, 610–619 (1985).
[Crossref]

Porterfield, D. W.

T.W. Crowe, W. L. Bishop, D. W. Porterfield, J. L. Hesler, and R. M. Weikle, “Opening the terahertz. window with integrated diode circuits,” IEEE J. Solid States Circuits. 40, 2104–2110 (2005).
[Crossref]

Quast, H.

K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications” Phys. Med. Biol. 47, 3743 (2002).
[Crossref] [PubMed]

Reiten, M. T.

K. McClatchey, M. T. Reiten, and R. A. Cheville, “Time resolved synthetic aperture terahertz impulse imaging,” Appl. Phys. Lett. 79, 4485–4487 (2001).
[Crossref]

RJ, Dengler

Siegel PH and Dengler RJ, “Terahertz heterodyne imaging Part II: Instruments” Int. J. Infrared Millimeter Waves 27, 631 (2006).

Roskos, H. G.

K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications” Phys. Med. Biol. 47, 3743 (2002).
[Crossref] [PubMed]

Rudd, J.V.

D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Schulkin, B.

A. Bandyopadhyay, A. Stepanov, B. Schulkin, M. D. Federici, A. Sengupta, D. Gary, J. F. Federici, R. Barat, Z. -H. Michalopoulou, and D. Zimdars, “Terahertz interferometric and synthetic aperture imaging,” J. Opt. Soc. Am. A 23, 1168 (2006).
[Crossref]

Sengupta, A.

A. Bandyopadhyay, A. Stepanov, B. Schulkin, M. D. Federici, A. Sengupta, D. Gary, J. F. Federici, R. Barat, Z. -H. Michalopoulou, and D. Zimdars, “Terahertz interferometric and synthetic aperture imaging,” J. Opt. Soc. Am. A 23, 1168 (2006).
[Crossref]

Shur, M.

Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, and X.-C. Zhang, “Spectroscopic characterization of explosives in the far infrared region,” SPIE Defense and Security Symp. #5411–5412 (2004).

Siebert, K.

K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications” Phys. Med. Biol. 47, 3743 (2002).
[Crossref] [PubMed]

Stepanov, A.

A. Bandyopadhyay, A. Stepanov, B. Schulkin, M. D. Federici, A. Sengupta, D. Gary, J. F. Federici, R. Barat, Z. -H. Michalopoulou, and D. Zimdars, “Terahertz interferometric and synthetic aperture imaging,” J. Opt. Soc. Am. A 23, 1168 (2006).
[Crossref]

Sun, C.-K.

H.-W. Chen, J.-Y. Lu, L.-J. Chen, P.-J. Chiang, H.-C. Chang, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “THz Fiber Directional Coupler,” Proc. CLEO/QELS’2007, Baltimore, MD, USA (2007).

Sun, Chi-Kuang

J.-Y. Lu, C.-M. Chiu, C.-C.u Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and Chi-Kuang Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” revised version submitted to Appl. Phys. Lett..
[PubMed]

Taubner, T.

Thomson, M.

K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications” Phys. Med. Biol. 47, 3743 (2002).
[Crossref] [PubMed]

Thornton, D. D.

J. E. Carlstrom, R. L. Plambeck, and D. D. Thornton, “A continuously Tunable 65–115 GHz Gunn Oscillator,” IEEE Trans. Microwave Theory and Tech. 33, 610–619 (1985).
[Crossref]

Tselev, A.

A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis, “Broadband dielectric microwave microscopy on micron length scales,” Rev. Sci. Instrum. 78, 044701 (2007).
[Crossref] [PubMed]

Veksler, D.

Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, and X.-C. Zhang, “Spectroscopic characterization of explosives in the far infrared region,” SPIE Defense and Security Symp. #5411–5412 (2004).

Weikle, R. M.

T.W. Crowe, W. L. Bishop, D. W. Porterfield, J. L. Hesler, and R. M. Weikle, “Opening the terahertz. window with integrated diode circuits,” IEEE J. Solid States Circuits. 40, 2104–2110 (2005).
[Crossref]

Zhang, X.-C.

B. S. Ferguson, H. Liu, S. Hay, D. Findlay, X.-C. Zhang, and D. Abbott, “In vitro osteosarcoma biosensing using THz time domain spectroscopy,” Proc. SPIE—Int. Soc. Opt. Eng. 5275, 304 (2004).

Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, and X.-C. Zhang, “Spectroscopic characterization of explosives in the far infrared region,” SPIE Defense and Security Symp. #5411–5412 (2004).

Zimdars, D.

A. Bandyopadhyay, A. Stepanov, B. Schulkin, M. D. Federici, A. Sengupta, D. Gary, J. F. Federici, R. Barat, Z. -H. Michalopoulou, and D. Zimdars, “Terahertz interferometric and synthetic aperture imaging,” J. Opt. Soc. Am. A 23, 1168 (2006).
[Crossref]

Appl. Phys. B (1)

D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Appl. Phys. Lett. (2)

K. McClatchey, M. T. Reiten, and R. A. Cheville, “Time resolved synthetic aperture terahertz impulse imaging,” Appl. Phys. Lett. 79, 4485–4487 (2001).
[Crossref]

B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, “Contras of Microwave Near-field Microscopy,” Appl. Phys. Lett. 70, 2667–2669 (1997).
[Crossref]

IEEE J. Solid States Circuits. (1)

T.W. Crowe, W. L. Bishop, D. W. Porterfield, J. L. Hesler, and R. M. Weikle, “Opening the terahertz. window with integrated diode circuits,” IEEE J. Solid States Circuits. 40, 2104–2110 (2005).
[Crossref]

IEEE Trans. Microwave Theory and Tech. (1)

J. E. Carlstrom, R. L. Plambeck, and D. D. Thornton, “A continuously Tunable 65–115 GHz Gunn Oscillator,” IEEE Trans. Microwave Theory and Tech. 33, 610–619 (1985).
[Crossref]

Int. J. Infrared Millimeter Waves (1)

Siegel PH and Dengler RJ, “Terahertz heterodyne imaging Part II: Instruments” Int. J. Infrared Millimeter Waves 27, 631 (2006).

Opt. Express (1)

Opt. Lett. (1)

Phys. Med. Biol. (1)

K. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications” Phys. Med. Biol. 47, 3743 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

R. A. Cheville, R.Wand. McGowan, and D. Grischkowsky, “Time resolved measurements which isolate the mechanisms responsible for terahertz glory scattering from dielectric spheres,” Phys. Rev. Lett. 80, 269 (1998).
[Crossref]

Proc. SPIE—Int. Soc. Opt. Eng. (1)

B. S. Ferguson, H. Liu, S. Hay, D. Findlay, X.-C. Zhang, and D. Abbott, “In vitro osteosarcoma biosensing using THz time domain spectroscopy,” Proc. SPIE—Int. Soc. Opt. Eng. 5275, 304 (2004).

Rev. Sci. Instrum. (1)

A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis, “Broadband dielectric microwave microscopy on micron length scales,” Rev. Sci. Instrum. 78, 044701 (2007).
[Crossref] [PubMed]

Other (4)

A. Bandyopadhyay, A. Stepanov, B. Schulkin, M. D. Federici, A. Sengupta, D. Gary, J. F. Federici, R. Barat, Z. -H. Michalopoulou, and D. Zimdars, “Terahertz interferometric and synthetic aperture imaging,” J. Opt. Soc. Am. A 23, 1168 (2006).
[Crossref]

H.-W. Chen, J.-Y. Lu, L.-J. Chen, P.-J. Chiang, H.-C. Chang, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “THz Fiber Directional Coupler,” Proc. CLEO/QELS’2007, Baltimore, MD, USA (2007).

J.-Y. Lu, C.-M. Chiu, C.-C.u Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and Chi-Kuang Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” revised version submitted to Appl. Phys. Lett..
[PubMed]

Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, and X.-C. Zhang, “Spectroscopic characterization of explosives in the far infrared region,” SPIE Defense and Security Symp. #5411–5412 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the THz fiber endoscope system based on two subwavelength plastic fibers. (b) The result of the THz spot size measurement.

Fig. 2.
Fig. 2.

(a) The Golay cell measured THz reflection power by moving the glass spherical lens 1 along the z direction away from the imaging fiber tip and by fixing the fiber-tip at the central point of the lens. (b) and (c) show the 2D fiber-scanning THz reflective images of the glass spherical lens 1 by positioning the lens at the fixed z0 and z1 positions respectively, as labeled in (a). (d) 2D fiber-scanning THz reflective images of the glass spherical lens 2 by positioning the lens at the fixed z0 position.

Fig. 3.
Fig. 3.

Reconstructed 3D THz images of (a) lens 1 and (b) lens 2. Colors represent different magnitudes of the extracted reflection oscillation amplitude A. These images were acquired by the THz interferometric fiber-endoscope.

Fig. 4.
Fig. 4.

Reconstructed surface profile (black line) of lens 1 and its comparison with the lens maker formula (red line).

Fig. 5
Fig. 5

THz 2D image corresponding to the (a) extracted amplitude A and the (b) phase ϕ0 from the burned porcine skin. The ring-shaped burned area can be clearly identified. (c) The reconstructed 3D THz image of the burned porcine skin. Colors represent the extracted reflection oscillation amplitude A. This image was acquired by the THz interferometric fiber-endoscope. Inset shows the photo of the burned porcine skin. The THz reconstructed image matches well with the optical image.

Metrics