Abstract

We directly determine the experimental photonic band dispersion structure of waveguiding modes under the light line in a two-dimensional photonic crystal (2D PhC) waveguide by using angle-resolved attenuated total reflection spectroscopy. Resonance coupling between the external evanescent wave from total reflection within the prism and the waveguiding modes in the 2D PhC provides clear information on individual band components by resolving the angle (i.e., wave vector k) and photon energy. The experimentally determined photonic band structure, which is essential for understanding the novel light propagation properties of PhC systems with many degrees of freedom, agrees well with the band structure predicted by theory. Furthermore, we demonstrate the accuracy and suitability of this method by analyzing field distribution and eigen-photon-energy calculations for a model structure identical to the experimental arrangement of the prism and sample structure.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282, 274-276 (1998).
    [CrossRef] [PubMed]
  4. P. I. Borel, A. Harpøth, L. H. Frandsen, M. Kristensen, P. Shi, J. S. Jensen, and O. Sigmund, "Topology optimization and fabrication of photonic crystal structures," Opt. Express 12, 1996-2001 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-9-1996.
    [CrossRef] [PubMed]
  5. Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
    [CrossRef] [PubMed]
  6. S. Foteinopoulou and C. M. Soukoulis, "Negative refraction and left-handed behavior in two-dimensional photonic crystals," Phys. Rev. B 67, 235107 (2003).
    [CrossRef]
  7. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative refraction at infrared wavelengths in a two-dimensional photonic crystal," Phys. Rev. Lett. 93, 073902 (2004).
    [CrossRef] [PubMed]
  8. R. E. Slusher and B. J. Eggleton, Nonlinear Photonic Crystals, (Springer, Berlin, 2003).
  9. D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behaviour in linear and nonlinear waveguide lattices," Nature 424, 817-823 (2003).
    [CrossRef] [PubMed]
  10. S. Inoue and Y. Aoyagi, "Design and fabrication of two-dimensional photonic crystals with predetermined nonlinear optical properties," Phys. Rev. Lett. 94, 103904 (2005).
    [CrossRef] [PubMed]
  11. S. Inoue and Y. Aoyagi, "Ultraviolet second-harmonic generation and sum-frequency mixing in two-dimensional nonlinear optical polymer photonic crystals," Jpn. J. Appl. Phys. 45, 6103-6107 (2006).
    [CrossRef]
  12. V. N. Astratov, D.M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, "Photonic band-structure effects in the reflectivity of periodically patterned waveguides," Phys. Rev. B 60, R16255-R16258 (1999).
    [CrossRef]
  13. S. Inoue and Y. Aoyagi, "Photonic band structure and related properties of photonic crystal waveguides in nonlinear optical polymers with metallic cladding," Phys. Rev. B 69, 205109 (2004).
    [CrossRef]
  14. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef] [PubMed]
  15. A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
    [CrossRef]
  16. S. Inoue, K. Kajikawa, and Y. Aoyagi, "Dry-etching method for fabricating photonic-crystal waveguides in nonlinear-optical polymer," Appl. Phys. Lett. 82, 2966-2968 (2003).
    [CrossRef]
  17. S. Inoue and K. Kajikawa, "Inductivity coupled plasma etching to fabricate the nonlinear optical polymer photonic crystal waveguides," Mater. Sci. Eng. B 103, 170-176 (2003).
    [CrossRef]
  18. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat. AP-14, 302-307 (1966).
  19. A. Taflow, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House INC, Norwood, 1995).
  20. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]

2006 (1)

S. Inoue and Y. Aoyagi, "Ultraviolet second-harmonic generation and sum-frequency mixing in two-dimensional nonlinear optical polymer photonic crystals," Jpn. J. Appl. Phys. 45, 6103-6107 (2006).
[CrossRef]

2005 (1)

S. Inoue and Y. Aoyagi, "Design and fabrication of two-dimensional photonic crystals with predetermined nonlinear optical properties," Phys. Rev. Lett. 94, 103904 (2005).
[CrossRef] [PubMed]

2004 (3)

P. I. Borel, A. Harpøth, L. H. Frandsen, M. Kristensen, P. Shi, J. S. Jensen, and O. Sigmund, "Topology optimization and fabrication of photonic crystal structures," Opt. Express 12, 1996-2001 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-9-1996.
[CrossRef] [PubMed]

S. Inoue and Y. Aoyagi, "Photonic band structure and related properties of photonic crystal waveguides in nonlinear optical polymers with metallic cladding," Phys. Rev. B 69, 205109 (2004).
[CrossRef]

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative refraction at infrared wavelengths in a two-dimensional photonic crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

2003 (5)

D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behaviour in linear and nonlinear waveguide lattices," Nature 424, 817-823 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

S. Foteinopoulou and C. M. Soukoulis, "Negative refraction and left-handed behavior in two-dimensional photonic crystals," Phys. Rev. B 67, 235107 (2003).
[CrossRef]

S. Inoue, K. Kajikawa, and Y. Aoyagi, "Dry-etching method for fabricating photonic-crystal waveguides in nonlinear-optical polymer," Appl. Phys. Lett. 82, 2966-2968 (2003).
[CrossRef]

S. Inoue and K. Kajikawa, "Inductivity coupled plasma etching to fabricate the nonlinear optical polymer photonic crystal waveguides," Mater. Sci. Eng. B 103, 170-176 (2003).
[CrossRef]

2001 (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

1999 (1)

V. N. Astratov, D.M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, "Photonic band-structure effects in the reflectivity of periodically patterned waveguides," Phys. Rev. B 60, R16255-R16258 (1999).
[CrossRef]

1998 (1)

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282, 274-276 (1998).
[CrossRef] [PubMed]

1987 (2)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

1968 (1)

A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[CrossRef]

1966 (1)

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat. AP-14, 302-307 (1966).

Akahane, Y.

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Anand, S.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative refraction at infrared wavelengths in a two-dimensional photonic crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Aoyagi, Y.

S. Inoue and Y. Aoyagi, "Ultraviolet second-harmonic generation and sum-frequency mixing in two-dimensional nonlinear optical polymer photonic crystals," Jpn. J. Appl. Phys. 45, 6103-6107 (2006).
[CrossRef]

S. Inoue and Y. Aoyagi, "Design and fabrication of two-dimensional photonic crystals with predetermined nonlinear optical properties," Phys. Rev. Lett. 94, 103904 (2005).
[CrossRef] [PubMed]

S. Inoue and Y. Aoyagi, "Photonic band structure and related properties of photonic crystal waveguides in nonlinear optical polymers with metallic cladding," Phys. Rev. B 69, 205109 (2004).
[CrossRef]

S. Inoue, K. Kajikawa, and Y. Aoyagi, "Dry-etching method for fabricating photonic-crystal waveguides in nonlinear-optical polymer," Appl. Phys. Lett. 82, 2966-2968 (2003).
[CrossRef]

Asano, T.

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Astratov, V. N.

V. N. Astratov, D.M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, "Photonic band-structure effects in the reflectivity of periodically patterned waveguides," Phys. Rev. B 60, R16255-R16258 (1999).
[CrossRef]

Berrier, A.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative refraction at infrared wavelengths in a two-dimensional photonic crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Borel, P. I.

Chow, E.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282, 274-276 (1998).
[CrossRef] [PubMed]

Christodoulides, D. N.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behaviour in linear and nonlinear waveguide lattices," Nature 424, 817-823 (2003).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Culshaw, I. S.

V. N. Astratov, D.M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, "Photonic band-structure effects in the reflectivity of periodically patterned waveguides," Phys. Rev. B 60, R16255-R16258 (1999).
[CrossRef]

De La Rue, R. M.

V. N. Astratov, D.M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, "Photonic band-structure effects in the reflectivity of periodically patterned waveguides," Phys. Rev. B 60, R16255-R16258 (1999).
[CrossRef]

Foteinopoulou, S.

S. Foteinopoulou and C. M. Soukoulis, "Negative refraction and left-handed behavior in two-dimensional photonic crystals," Phys. Rev. B 67, 235107 (2003).
[CrossRef]

Frandsen, L. H.

Harpøth, A.

Hietala, V.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282, 274-276 (1998).
[CrossRef] [PubMed]

Inoue, S.

S. Inoue and Y. Aoyagi, "Ultraviolet second-harmonic generation and sum-frequency mixing in two-dimensional nonlinear optical polymer photonic crystals," Jpn. J. Appl. Phys. 45, 6103-6107 (2006).
[CrossRef]

S. Inoue and Y. Aoyagi, "Design and fabrication of two-dimensional photonic crystals with predetermined nonlinear optical properties," Phys. Rev. Lett. 94, 103904 (2005).
[CrossRef] [PubMed]

S. Inoue and Y. Aoyagi, "Photonic band structure and related properties of photonic crystal waveguides in nonlinear optical polymers with metallic cladding," Phys. Rev. B 69, 205109 (2004).
[CrossRef]

S. Inoue, K. Kajikawa, and Y. Aoyagi, "Dry-etching method for fabricating photonic-crystal waveguides in nonlinear-optical polymer," Appl. Phys. Lett. 82, 2966-2968 (2003).
[CrossRef]

S. Inoue and K. Kajikawa, "Inductivity coupled plasma etching to fabricate the nonlinear optical polymer photonic crystal waveguides," Mater. Sci. Eng. B 103, 170-176 (2003).
[CrossRef]

Jensen, J. S.

Joannopoulos, J. D.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282, 274-276 (1998).
[CrossRef] [PubMed]

John, S.

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kajikawa, K.

S. Inoue and K. Kajikawa, "Inductivity coupled plasma etching to fabricate the nonlinear optical polymer photonic crystal waveguides," Mater. Sci. Eng. B 103, 170-176 (2003).
[CrossRef]

S. Inoue, K. Kajikawa, and Y. Aoyagi, "Dry-etching method for fabricating photonic-crystal waveguides in nonlinear-optical polymer," Appl. Phys. Lett. 82, 2966-2968 (2003).
[CrossRef]

Krauss, T. F.

V. N. Astratov, D.M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, "Photonic band-structure effects in the reflectivity of periodically patterned waveguides," Phys. Rev. B 60, R16255-R16258 (1999).
[CrossRef]

Kristensen, M.

Lederer, F.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behaviour in linear and nonlinear waveguide lattices," Nature 424, 817-823 (2003).
[CrossRef] [PubMed]

Lin, S. Y.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282, 274-276 (1998).
[CrossRef] [PubMed]

Mulot, M.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative refraction at infrared wavelengths in a two-dimensional photonic crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Noda, S.

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Otto, A.

A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[CrossRef]

Qiu, M.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative refraction at infrared wavelengths in a two-dimensional photonic crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Shi, P.

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Sigmund, O.

Silberberg, Y.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behaviour in linear and nonlinear waveguide lattices," Nature 424, 817-823 (2003).
[CrossRef] [PubMed]

Skolnick, M. S.

V. N. Astratov, D.M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, "Photonic band-structure effects in the reflectivity of periodically patterned waveguides," Phys. Rev. B 60, R16255-R16258 (1999).
[CrossRef]

Song, B.

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Soukoulis, C. M.

S. Foteinopoulou and C. M. Soukoulis, "Negative refraction and left-handed behavior in two-dimensional photonic crystals," Phys. Rev. B 67, 235107 (2003).
[CrossRef]

Stevenson, R. M.

V. N. Astratov, D.M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, "Photonic band-structure effects in the reflectivity of periodically patterned waveguides," Phys. Rev. B 60, R16255-R16258 (1999).
[CrossRef]

Swillo, M.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative refraction at infrared wavelengths in a two-dimensional photonic crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Talneau, A.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative refraction at infrared wavelengths in a two-dimensional photonic crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Thylen, L.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative refraction at infrared wavelengths in a two-dimensional photonic crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Villeneuve, P. R.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282, 274-276 (1998).
[CrossRef] [PubMed]

Whittaker, D.M.

V. N. Astratov, D.M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, "Photonic band-structure effects in the reflectivity of periodically patterned waveguides," Phys. Rev. B 60, R16255-R16258 (1999).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Yee, K. S.

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat. AP-14, 302-307 (1966).

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. Inoue, K. Kajikawa, and Y. Aoyagi, "Dry-etching method for fabricating photonic-crystal waveguides in nonlinear-optical polymer," Appl. Phys. Lett. 82, 2966-2968 (2003).
[CrossRef]

IEEE Trans. Antennas Propagat. (1)

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat. AP-14, 302-307 (1966).

Jpn. J. Appl. Phys. (1)

S. Inoue and Y. Aoyagi, "Ultraviolet second-harmonic generation and sum-frequency mixing in two-dimensional nonlinear optical polymer photonic crystals," Jpn. J. Appl. Phys. 45, 6103-6107 (2006).
[CrossRef]

Mater. Sci. Eng. B (1)

S. Inoue and K. Kajikawa, "Inductivity coupled plasma etching to fabricate the nonlinear optical polymer photonic crystal waveguides," Mater. Sci. Eng. B 103, 170-176 (2003).
[CrossRef]

Nature (2)

D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behaviour in linear and nonlinear waveguide lattices," Nature 424, 817-823 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B (4)

S. Foteinopoulou and C. M. Soukoulis, "Negative refraction and left-handed behavior in two-dimensional photonic crystals," Phys. Rev. B 67, 235107 (2003).
[CrossRef]

V. N. Astratov, D.M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, "Photonic band-structure effects in the reflectivity of periodically patterned waveguides," Phys. Rev. B 60, R16255-R16258 (1999).
[CrossRef]

S. Inoue and Y. Aoyagi, "Photonic band structure and related properties of photonic crystal waveguides in nonlinear optical polymers with metallic cladding," Phys. Rev. B 69, 205109 (2004).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Phys. Rev. Lett. (5)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

S. Inoue and Y. Aoyagi, "Design and fabrication of two-dimensional photonic crystals with predetermined nonlinear optical properties," Phys. Rev. Lett. 94, 103904 (2005).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative refraction at infrared wavelengths in a two-dimensional photonic crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Science (1)

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282, 274-276 (1998).
[CrossRef] [PubMed]

Z. Phys. (1)

A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[CrossRef]

Other (2)

R. E. Slusher and B. J. Eggleton, Nonlinear Photonic Crystals, (Springer, Berlin, 2003).

A. Taflow, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House INC, Norwood, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic diagram showing the experimental geometry of angle-resolved attenuated total reflection spectroscopy and the 2D PhC waveguide used in the experiments and theoretical calculations. The collimated incident white light is transverse electric (TE) polarized. The coupling prism in the Otto configuration is used to couple incident radiation to waveguiding modes in the 2D PhC. (b) Cross-sectional SEM micrograph of the 2D PhC waveguide. The crystal structure of the patterned layer has a square lattice of circular air holes of radius 100 nm with a lattice constant of 300 nm. The inset shows the corresponding 2D first Brillouin zone and the high-symmetry lattice points.

Fig. 2.
Fig. 2.

Typical measured reflectance spectra for various angles of incidence with TE polarization along the Γ-X direction. For clarity, the spectra are shifted along the vertical axis by 0.3 with respect to each other.

Fig. 3.
Fig. 3.

Experimental photonic band structure under the light line of the 2D PhC waveguide along the Γ-X line obtained by polarized angular-dependent reflection spectroscopy (closed circles) and the theoretical band structure calculated by the 3D finite-difference time-domain method (open squares). No empirical adjustments were made in the calculations. The field distributions and eigen-photon-energies of the bands indexed A, B, and C at the high-symmetry lattice point X are calculated as a function of the separation distance between the PhC and prism and shown in Figs. 4 and 5.

Fig. 4.
Fig. 4.

Electric field distributions in the z-x plane through the center of an air hole for several prism/2D PhC separation distances d at the X point of the three different photon energy bands indexed as A, B, and C in Fig. 3. The maximum of the electric field is normalized to unity. Perspective outlines of the prism/air interface in cross-section are superimposed on the diagram (red lines).

Fig. 5.
Fig. 5.

Eigen-photon-energy of band modes as a function of the prism/2D PhC separation distance for the three different energy bands indexed as A, B, and C at the point X in Fig. 3.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

× E ( r , t ) = μ ( r ) t H ( r , t )
× H ( r , t ) = σ ( r ) E + ε ( r ) t E ( r , t )

Metrics