Abstract

Retrieval of chlorophyll fluorescence magnitude using Fluorescence Height algorithms in coastal waters is more complicated than in the open ocean because of the strong deviations of elastic reflectance within the fluorescence band from the derived fluorescence baseline. We use results of our recently established relationship between fluorescence magnitude and concentrations of water constituents together with extensive HYDROLIGHT simulations, field and satellite data to analyze the performance and retrieval limitations of MODIS and MERIS FLH algorithms in the variety of coastal waters and to examine improvements for spectral band selection suitable for future sensors.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Fischer and U. Kronfeld, “Sun-stimulated chlorophyll fluorescence. 1. Influence of oceanic properties,” Int. J. Remote Sens. 11, 2125–2147 (1990).
    [CrossRef]
  2. M. Babin, A. Morel, and B. Gentili, “Remote sensing of sea surface Sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence,” Int. J. Remote Sens. 17, 2417–2448 (1996).
    [CrossRef]
  3. R.M. Letelier and M.R. Abbott, “An Analysis of Chlorophyll Fluorescence Algorithms for the Moderate Resolution Imaging Spectrometer (MODIS),” Remote Sens. Environ. 58, 215–223 (1996).
    [CrossRef]
  4. Y. Huot, C. A. Brown, and J. J. Cullen, “New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products,” Limnol. Oceanogr. Methods 3, 108–130 (2005).
    [CrossRef]
  5. C. Hu, F.E. Muller-Karger, C.J. Taylor, K.L. Carder, C. Kelble, E. Johns, and C.A. Heil, “Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters,” Remote Sens. Environ. 97, 311–321 (2005).
    [CrossRef]
  6. G. Dall’Olmo, A.A. Gitelson, D.C. Rundquist, B. Leavitt, T. Barrow, and J.C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ. 96, 176–187 (2005).
    [CrossRef]
  7. S. Ahmed, A. Gilerson, J. Zhou, J. Chowdhary, I. Ioannou, R. Amin, B. Gross, and F. Moshary, “Evaluation of the impact of backscatter spectral characteristics on Chl retrievals in coastal waters,” Proc. SPIE 6406 (2006).
    [CrossRef]
  8. D. Pozdnyakov, A. Lyaskovsky, H. Grassl, and L. Petterson, “Numerical modeling of transspectral processes in natural waters: implications for remote sensing,” Int. J. Remote Sens. 23, No 8, 1581–1607 (2002).
    [CrossRef]
  9. S. R. Laney, R. M. Letelier, and M. R. Abbott, “Parameterizing the natural fluorescence kinetics of Thalassiosira weissflogii,” Limnol. Oceanogr. 50, 1499–1510 (2005).
    [CrossRef]
  10. J.F.R. Gower, R. Doerffer, and G.A. Borstad, “Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS,” Int. J. Remote Sens. 20, 1771–1786 (1999).
    [CrossRef]
  11. R.A. Arnone, Z.P. Lee, P. Martinolich, B. Casey, and S.D. Ladner, “Characterizing the optical properties of coastal waters by coupling 1 km and 250 m channels on MODIS – Terra,” in Proc. Ocean Optics XVI, Santa Fe, New Mexico (2002).
  12. M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32, L13606 (2005).
    [CrossRef]
  13. B. Franz, “MODIS land bands for ocean remote sensing applications,” in Proc. Ocean Optics XVIII, Montreal, Canada (2006).
  14. J.F. Schalles, Optical Remote Sensing Techniques to Estimate Phytoplankton Chlorophyll a Concentrations in Coastal Waters with Varying Suspended Matter and CDOM Concentrations, in Remote Sensing of Aquatic Coastal Ecosystem Processes: Science and Management Applications, L.L. Richardson and E.F. LeDrew, eds. (Springer, 2006), Chap. 3.
  15. S. Ahmed, A. Gilerson, A. Gill, B. M. Gross, F. Moshary, and J. Zhou, “Separation of Fluorescence and Elastic Scattering from Algae in Seawater Using Polarization Discrimination,” Opt. Commun. 235, 23–30 (2004).
    [CrossRef]
  16. A. Gilerson, J. Zhou, M. Oo, J. Chowdhary, B. Gross, F. Moshary, and S. Ahmed, “Retrieval of fluorescence from reflectance spectra of algae in sea water through polarization discrimination: modeling and experiments,” Appl. Opt. 45, 5568–5581 (2006).
    [CrossRef] [PubMed]
  17. C.S. Roesler and M.J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, C7, 13279–13294 (1995).
    [CrossRef]
  18. S. Ahmed, A. Gilerson, J. Zhou, I. Ioannou, B. Gross, and F. Moshary, “Impact of Apparent Fluorescence Shift on Retrieval Algorithms for Coastal Waters,” in Proc. Ocean Optics XVIII, Montreal, Canada (2006).
  19. J.F.R. Gower, L. Brown, and G.A. Borstad, “Observation of chlorophyll fluorescence in west coast waters of Canada using the MODIS satellite sensor,” Can. J. Remote Sens. 30, 17–25 (2004).
    [CrossRef]
  20. Z. P. Lee, http://www.ioccg.org/groups/OCAG_data.html.
  21. C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic Press, New York, 1994).
  22. C. D. Mobley and L. K. Sundman, HYDROLIGHT 4.2, Sequoia Scientific, Inc. (2001).
  23. A. Gilerson, J. Zhou, S. Hlaing, I. Ioannou, J. Schalles, B. Gross, F. Moshary, and S. Ahmed, “Fluorescence component in the reflectance spectra from coastal waters. Dependence on water composition,” Opt. Express 15, 15702–15721 (2007).
    [CrossRef] [PubMed]
  24. S. Maritorena, A. Morel, and B. Gentili, “Determination of the fluorescence quantum yield by oceanic phytoplankton in their natural habitat,” Appl. Opt. 39, 6725–6737 (2000).
    [CrossRef]
  25. J. R. Morrison, “In situ determination of the quantum yield of phytoplankton chlorophyll a fluorescence: a simple algorithm,observations, and a model,” Limnol. Oceanogr. 48, 618–631 (2003).
    [CrossRef]
  26. D. McKee, A. Cunningham, D. Wright, and L. Hay,“Potential impacts of nonalgal materials on water-leaving Sun induced chlorophyll fluorescence signals in coastal waters,” Appl. Opt. 46, 7720–7729 (2007).
    [CrossRef] [PubMed]
  27. M. S. Twardowski, E. Boss, J. B. Macdonald, W. Scott Pegau, A. H. Barnard, and J. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
    [CrossRef]
  28. A. Gilerson, J. Zhou, and R. Fortich, “Particulate Scattering in Coastal Waters: Chesapeake Bay Study,” Sea Technology 48, 15–18 (2007).
  29. R. Pope and E. Fry, “Absorption spectrum (380 – 700 nm) of pure waters: II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
    [CrossRef]
  30. R.P. Bukata, J.H. Jerome, K.Y. Kondratyev, and D.V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).
  31. D. Stramski., A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
    [CrossRef]
  32. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N.G. Jerlov and E. S. Nielsen. eds. (Academic, New York, 1974).
  33. M. Sydor and R. A. Arnone, “Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters,” Appl. Opt. 36, 6905–6912 (1997).
    [CrossRef]
  34. K.J. Voss, “A spectral model of the beam attenuation coefficient in the ocean and coastal areas,” Limnol. Oceanogr. 37, 501–509 (1992).
    [CrossRef]
  35. W.W. Gregg and K.L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35, 1657–1675 (1990).
    [CrossRef]
  36. A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47, 404–417 (2002).
    [CrossRef]
  37. P. Gege and A. Albert, “A tool for inverse modeling of spectral measurements in deep and shallow waters” in Remote Sensing of Aquatic Coastal Ecosystem Processes: Science and Management Applications, L.L. Richardson and E.F. LeDrew, eds. (Springer, 2006), Chap. 4.
    [CrossRef]
  38. A.A. Gitelson, J.F. Schalles, and C.M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study,” Remote Sens. of Environ. 109, 464–472, 2007.
    [CrossRef]
  39. A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
    [CrossRef]
  40. http://www.oceancolor.gsfc.nasa.gov/seadas
  41. http://www.coastwatch.noaa.gov/hab/bulletins_ns.htm

2007 (4)

A. Gilerson, J. Zhou, and R. Fortich, “Particulate Scattering in Coastal Waters: Chesapeake Bay Study,” Sea Technology 48, 15–18 (2007).

A.A. Gitelson, J.F. Schalles, and C.M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study,” Remote Sens. of Environ. 109, 464–472, 2007.
[CrossRef]

D. McKee, A. Cunningham, D. Wright, and L. Hay,“Potential impacts of nonalgal materials on water-leaving Sun induced chlorophyll fluorescence signals in coastal waters,” Appl. Opt. 46, 7720–7729 (2007).
[CrossRef] [PubMed]

A. Gilerson, J. Zhou, S. Hlaing, I. Ioannou, J. Schalles, B. Gross, F. Moshary, and S. Ahmed, “Fluorescence component in the reflectance spectra from coastal waters. Dependence on water composition,” Opt. Express 15, 15702–15721 (2007).
[CrossRef] [PubMed]

2006 (2)

A. Gilerson, J. Zhou, M. Oo, J. Chowdhary, B. Gross, F. Moshary, and S. Ahmed, “Retrieval of fluorescence from reflectance spectra of algae in sea water through polarization discrimination: modeling and experiments,” Appl. Opt. 45, 5568–5581 (2006).
[CrossRef] [PubMed]

S. Ahmed, A. Gilerson, J. Zhou, J. Chowdhary, I. Ioannou, R. Amin, B. Gross, and F. Moshary, “Evaluation of the impact of backscatter spectral characteristics on Chl retrievals in coastal waters,” Proc. SPIE 6406 (2006).
[CrossRef]

2005 (5)

S. R. Laney, R. M. Letelier, and M. R. Abbott, “Parameterizing the natural fluorescence kinetics of Thalassiosira weissflogii,” Limnol. Oceanogr. 50, 1499–1510 (2005).
[CrossRef]

Y. Huot, C. A. Brown, and J. J. Cullen, “New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products,” Limnol. Oceanogr. Methods 3, 108–130 (2005).
[CrossRef]

C. Hu, F.E. Muller-Karger, C.J. Taylor, K.L. Carder, C. Kelble, E. Johns, and C.A. Heil, “Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters,” Remote Sens. Environ. 97, 311–321 (2005).
[CrossRef]

G. Dall’Olmo, A.A. Gitelson, D.C. Rundquist, B. Leavitt, T. Barrow, and J.C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ. 96, 176–187 (2005).
[CrossRef]

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32, L13606 (2005).
[CrossRef]

2004 (2)

S. Ahmed, A. Gilerson, A. Gill, B. M. Gross, F. Moshary, and J. Zhou, “Separation of Fluorescence and Elastic Scattering from Algae in Seawater Using Polarization Discrimination,” Opt. Commun. 235, 23–30 (2004).
[CrossRef]

J.F.R. Gower, L. Brown, and G.A. Borstad, “Observation of chlorophyll fluorescence in west coast waters of Canada using the MODIS satellite sensor,” Can. J. Remote Sens. 30, 17–25 (2004).
[CrossRef]

2003 (1)

J. R. Morrison, “In situ determination of the quantum yield of phytoplankton chlorophyll a fluorescence: a simple algorithm,observations, and a model,” Limnol. Oceanogr. 48, 618–631 (2003).
[CrossRef]

2002 (2)

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47, 404–417 (2002).
[CrossRef]

D. Pozdnyakov, A. Lyaskovsky, H. Grassl, and L. Petterson, “Numerical modeling of transspectral processes in natural waters: implications for remote sensing,” Int. J. Remote Sens. 23, No 8, 1581–1607 (2002).
[CrossRef]

2001 (2)

M. S. Twardowski, E. Boss, J. B. Macdonald, W. Scott Pegau, A. H. Barnard, and J. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

D. Stramski., A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
[CrossRef]

2000 (1)

1999 (1)

J.F.R. Gower, R. Doerffer, and G.A. Borstad, “Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS,” Int. J. Remote Sens. 20, 1771–1786 (1999).
[CrossRef]

1997 (2)

1996 (2)

M. Babin, A. Morel, and B. Gentili, “Remote sensing of sea surface Sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence,” Int. J. Remote Sens. 17, 2417–2448 (1996).
[CrossRef]

R.M. Letelier and M.R. Abbott, “An Analysis of Chlorophyll Fluorescence Algorithms for the Moderate Resolution Imaging Spectrometer (MODIS),” Remote Sens. Environ. 58, 215–223 (1996).
[CrossRef]

1995 (2)

C.S. Roesler and M.J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, C7, 13279–13294 (1995).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

1992 (1)

K.J. Voss, “A spectral model of the beam attenuation coefficient in the ocean and coastal areas,” Limnol. Oceanogr. 37, 501–509 (1992).
[CrossRef]

1990 (2)

W.W. Gregg and K.L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35, 1657–1675 (1990).
[CrossRef]

J. Fischer and U. Kronfeld, “Sun-stimulated chlorophyll fluorescence. 1. Influence of oceanic properties,” Int. J. Remote Sens. 11, 2125–2147 (1990).
[CrossRef]

Abbott, M. R.

S. R. Laney, R. M. Letelier, and M. R. Abbott, “Parameterizing the natural fluorescence kinetics of Thalassiosira weissflogii,” Limnol. Oceanogr. 50, 1499–1510 (2005).
[CrossRef]

Abbott, M.R.

R.M. Letelier and M.R. Abbott, “An Analysis of Chlorophyll Fluorescence Algorithms for the Moderate Resolution Imaging Spectrometer (MODIS),” Remote Sens. Environ. 58, 215–223 (1996).
[CrossRef]

Ahmed, S.

A. Gilerson, J. Zhou, S. Hlaing, I. Ioannou, J. Schalles, B. Gross, F. Moshary, and S. Ahmed, “Fluorescence component in the reflectance spectra from coastal waters. Dependence on water composition,” Opt. Express 15, 15702–15721 (2007).
[CrossRef] [PubMed]

A. Gilerson, J. Zhou, M. Oo, J. Chowdhary, B. Gross, F. Moshary, and S. Ahmed, “Retrieval of fluorescence from reflectance spectra of algae in sea water through polarization discrimination: modeling and experiments,” Appl. Opt. 45, 5568–5581 (2006).
[CrossRef] [PubMed]

S. Ahmed, A. Gilerson, J. Zhou, J. Chowdhary, I. Ioannou, R. Amin, B. Gross, and F. Moshary, “Evaluation of the impact of backscatter spectral characteristics on Chl retrievals in coastal waters,” Proc. SPIE 6406 (2006).
[CrossRef]

S. Ahmed, A. Gilerson, A. Gill, B. M. Gross, F. Moshary, and J. Zhou, “Separation of Fluorescence and Elastic Scattering from Algae in Seawater Using Polarization Discrimination,” Opt. Commun. 235, 23–30 (2004).
[CrossRef]

S. Ahmed, A. Gilerson, J. Zhou, I. Ioannou, B. Gross, and F. Moshary, “Impact of Apparent Fluorescence Shift on Retrieval Algorithms for Coastal Waters,” in Proc. Ocean Optics XVIII, Montreal, Canada (2006).

Albert, A.

P. Gege and A. Albert, “A tool for inverse modeling of spectral measurements in deep and shallow waters” in Remote Sensing of Aquatic Coastal Ecosystem Processes: Science and Management Applications, L.L. Richardson and E.F. LeDrew, eds. (Springer, 2006), Chap. 4.
[CrossRef]

Amin, R.

S. Ahmed, A. Gilerson, J. Zhou, J. Chowdhary, I. Ioannou, R. Amin, B. Gross, and F. Moshary, “Evaluation of the impact of backscatter spectral characteristics on Chl retrievals in coastal waters,” Proc. SPIE 6406 (2006).
[CrossRef]

Arnone, R. A.

Arnone, R.A.

R.A. Arnone, Z.P. Lee, P. Martinolich, B. Casey, and S.D. Ladner, “Characterizing the optical properties of coastal waters by coupling 1 km and 250 m channels on MODIS – Terra,” in Proc. Ocean Optics XVI, Santa Fe, New Mexico (2002).

Babin, M.

M. Babin, A. Morel, and B. Gentili, “Remote sensing of sea surface Sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence,” Int. J. Remote Sens. 17, 2417–2448 (1996).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

Barnard, A. H.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. Scott Pegau, A. H. Barnard, and J. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Barrow, T.

G. Dall’Olmo, A.A. Gitelson, D.C. Rundquist, B. Leavitt, T. Barrow, and J.C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ. 96, 176–187 (2005).
[CrossRef]

Borstad, G.A.

J.F.R. Gower, L. Brown, and G.A. Borstad, “Observation of chlorophyll fluorescence in west coast waters of Canada using the MODIS satellite sensor,” Can. J. Remote Sens. 30, 17–25 (2004).
[CrossRef]

J.F.R. Gower, R. Doerffer, and G.A. Borstad, “Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS,” Int. J. Remote Sens. 20, 1771–1786 (1999).
[CrossRef]

Boss, E.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. Scott Pegau, A. H. Barnard, and J. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Bricaud, A.

D. Stramski., A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

Brown, C. A.

Y. Huot, C. A. Brown, and J. J. Cullen, “New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products,” Limnol. Oceanogr. Methods 3, 108–130 (2005).
[CrossRef]

Brown, L.

J.F.R. Gower, L. Brown, and G.A. Borstad, “Observation of chlorophyll fluorescence in west coast waters of Canada using the MODIS satellite sensor,” Can. J. Remote Sens. 30, 17–25 (2004).
[CrossRef]

Bukata, R.P.

R.P. Bukata, J.H. Jerome, K.Y. Kondratyev, and D.V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).

Carder, K.L.

C. Hu, F.E. Muller-Karger, C.J. Taylor, K.L. Carder, C. Kelble, E. Johns, and C.A. Heil, “Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters,” Remote Sens. Environ. 97, 311–321 (2005).
[CrossRef]

W.W. Gregg and K.L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35, 1657–1675 (1990).
[CrossRef]

Casey, B.

R.A. Arnone, Z.P. Lee, P. Martinolich, B. Casey, and S.D. Ladner, “Characterizing the optical properties of coastal waters by coupling 1 km and 250 m channels on MODIS – Terra,” in Proc. Ocean Optics XVI, Santa Fe, New Mexico (2002).

Chowdhary, J.

S. Ahmed, A. Gilerson, J. Zhou, J. Chowdhary, I. Ioannou, R. Amin, B. Gross, and F. Moshary, “Evaluation of the impact of backscatter spectral characteristics on Chl retrievals in coastal waters,” Proc. SPIE 6406 (2006).
[CrossRef]

A. Gilerson, J. Zhou, M. Oo, J. Chowdhary, B. Gross, F. Moshary, and S. Ahmed, “Retrieval of fluorescence from reflectance spectra of algae in sea water through polarization discrimination: modeling and experiments,” Appl. Opt. 45, 5568–5581 (2006).
[CrossRef] [PubMed]

Ciotti, A. M.

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47, 404–417 (2002).
[CrossRef]

Claustre, H.

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

Cullen, J. J.

Y. Huot, C. A. Brown, and J. J. Cullen, “New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products,” Limnol. Oceanogr. Methods 3, 108–130 (2005).
[CrossRef]

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47, 404–417 (2002).
[CrossRef]

Cunningham, A.

Dall’Olmo, G.

G. Dall’Olmo, A.A. Gitelson, D.C. Rundquist, B. Leavitt, T. Barrow, and J.C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ. 96, 176–187 (2005).
[CrossRef]

Doerffer, R.

J.F.R. Gower, R. Doerffer, and G.A. Borstad, “Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS,” Int. J. Remote Sens. 20, 1771–1786 (1999).
[CrossRef]

Fischer, J.

J. Fischer and U. Kronfeld, “Sun-stimulated chlorophyll fluorescence. 1. Influence of oceanic properties,” Int. J. Remote Sens. 11, 2125–2147 (1990).
[CrossRef]

Fortich, R.

A. Gilerson, J. Zhou, and R. Fortich, “Particulate Scattering in Coastal Waters: Chesapeake Bay Study,” Sea Technology 48, 15–18 (2007).

Franz, B.

B. Franz, “MODIS land bands for ocean remote sensing applications,” in Proc. Ocean Optics XVIII, Montreal, Canada (2006).

Fry, E.

Gege, P.

P. Gege and A. Albert, “A tool for inverse modeling of spectral measurements in deep and shallow waters” in Remote Sensing of Aquatic Coastal Ecosystem Processes: Science and Management Applications, L.L. Richardson and E.F. LeDrew, eds. (Springer, 2006), Chap. 4.
[CrossRef]

Gentili, B.

S. Maritorena, A. Morel, and B. Gentili, “Determination of the fluorescence quantum yield by oceanic phytoplankton in their natural habitat,” Appl. Opt. 39, 6725–6737 (2000).
[CrossRef]

M. Babin, A. Morel, and B. Gentili, “Remote sensing of sea surface Sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence,” Int. J. Remote Sens. 17, 2417–2448 (1996).
[CrossRef]

Gilerson, A.

A. Gilerson, J. Zhou, and R. Fortich, “Particulate Scattering in Coastal Waters: Chesapeake Bay Study,” Sea Technology 48, 15–18 (2007).

A. Gilerson, J. Zhou, S. Hlaing, I. Ioannou, J. Schalles, B. Gross, F. Moshary, and S. Ahmed, “Fluorescence component in the reflectance spectra from coastal waters. Dependence on water composition,” Opt. Express 15, 15702–15721 (2007).
[CrossRef] [PubMed]

A. Gilerson, J. Zhou, M. Oo, J. Chowdhary, B. Gross, F. Moshary, and S. Ahmed, “Retrieval of fluorescence from reflectance spectra of algae in sea water through polarization discrimination: modeling and experiments,” Appl. Opt. 45, 5568–5581 (2006).
[CrossRef] [PubMed]

S. Ahmed, A. Gilerson, J. Zhou, J. Chowdhary, I. Ioannou, R. Amin, B. Gross, and F. Moshary, “Evaluation of the impact of backscatter spectral characteristics on Chl retrievals in coastal waters,” Proc. SPIE 6406 (2006).
[CrossRef]

S. Ahmed, A. Gilerson, A. Gill, B. M. Gross, F. Moshary, and J. Zhou, “Separation of Fluorescence and Elastic Scattering from Algae in Seawater Using Polarization Discrimination,” Opt. Commun. 235, 23–30 (2004).
[CrossRef]

S. Ahmed, A. Gilerson, J. Zhou, I. Ioannou, B. Gross, and F. Moshary, “Impact of Apparent Fluorescence Shift on Retrieval Algorithms for Coastal Waters,” in Proc. Ocean Optics XVIII, Montreal, Canada (2006).

Gill, A.

S. Ahmed, A. Gilerson, A. Gill, B. M. Gross, F. Moshary, and J. Zhou, “Separation of Fluorescence and Elastic Scattering from Algae in Seawater Using Polarization Discrimination,” Opt. Commun. 235, 23–30 (2004).
[CrossRef]

Gitelson, A.A.

A.A. Gitelson, J.F. Schalles, and C.M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study,” Remote Sens. of Environ. 109, 464–472, 2007.
[CrossRef]

G. Dall’Olmo, A.A. Gitelson, D.C. Rundquist, B. Leavitt, T. Barrow, and J.C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ. 96, 176–187 (2005).
[CrossRef]

Gower, J.F.R.

J.F.R. Gower, L. Brown, and G.A. Borstad, “Observation of chlorophyll fluorescence in west coast waters of Canada using the MODIS satellite sensor,” Can. J. Remote Sens. 30, 17–25 (2004).
[CrossRef]

J.F.R. Gower, R. Doerffer, and G.A. Borstad, “Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS,” Int. J. Remote Sens. 20, 1771–1786 (1999).
[CrossRef]

Grassl, H.

D. Pozdnyakov, A. Lyaskovsky, H. Grassl, and L. Petterson, “Numerical modeling of transspectral processes in natural waters: implications for remote sensing,” Int. J. Remote Sens. 23, No 8, 1581–1607 (2002).
[CrossRef]

Gregg, W.W.

W.W. Gregg and K.L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35, 1657–1675 (1990).
[CrossRef]

Gross, B.

A. Gilerson, J. Zhou, S. Hlaing, I. Ioannou, J. Schalles, B. Gross, F. Moshary, and S. Ahmed, “Fluorescence component in the reflectance spectra from coastal waters. Dependence on water composition,” Opt. Express 15, 15702–15721 (2007).
[CrossRef] [PubMed]

A. Gilerson, J. Zhou, M. Oo, J. Chowdhary, B. Gross, F. Moshary, and S. Ahmed, “Retrieval of fluorescence from reflectance spectra of algae in sea water through polarization discrimination: modeling and experiments,” Appl. Opt. 45, 5568–5581 (2006).
[CrossRef] [PubMed]

S. Ahmed, A. Gilerson, J. Zhou, J. Chowdhary, I. Ioannou, R. Amin, B. Gross, and F. Moshary, “Evaluation of the impact of backscatter spectral characteristics on Chl retrievals in coastal waters,” Proc. SPIE 6406 (2006).
[CrossRef]

S. Ahmed, A. Gilerson, J. Zhou, I. Ioannou, B. Gross, and F. Moshary, “Impact of Apparent Fluorescence Shift on Retrieval Algorithms for Coastal Waters,” in Proc. Ocean Optics XVIII, Montreal, Canada (2006).

Gross, B. M.

S. Ahmed, A. Gilerson, A. Gill, B. M. Gross, F. Moshary, and J. Zhou, “Separation of Fluorescence and Elastic Scattering from Algae in Seawater Using Polarization Discrimination,” Opt. Commun. 235, 23–30 (2004).
[CrossRef]

Hay, L.

Heil, C.A.

C. Hu, F.E. Muller-Karger, C.J. Taylor, K.L. Carder, C. Kelble, E. Johns, and C.A. Heil, “Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters,” Remote Sens. Environ. 97, 311–321 (2005).
[CrossRef]

Hladik, C.M.

A.A. Gitelson, J.F. Schalles, and C.M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study,” Remote Sens. of Environ. 109, 464–472, 2007.
[CrossRef]

Hlaing, S.

Holz, J.C.

G. Dall’Olmo, A.A. Gitelson, D.C. Rundquist, B. Leavitt, T. Barrow, and J.C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ. 96, 176–187 (2005).
[CrossRef]

Hu, C.

C. Hu, F.E. Muller-Karger, C.J. Taylor, K.L. Carder, C. Kelble, E. Johns, and C.A. Heil, “Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters,” Remote Sens. Environ. 97, 311–321 (2005).
[CrossRef]

Huot, Y.

Y. Huot, C. A. Brown, and J. J. Cullen, “New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products,” Limnol. Oceanogr. Methods 3, 108–130 (2005).
[CrossRef]

Ioannou, I.

A. Gilerson, J. Zhou, S. Hlaing, I. Ioannou, J. Schalles, B. Gross, F. Moshary, and S. Ahmed, “Fluorescence component in the reflectance spectra from coastal waters. Dependence on water composition,” Opt. Express 15, 15702–15721 (2007).
[CrossRef] [PubMed]

S. Ahmed, A. Gilerson, J. Zhou, J. Chowdhary, I. Ioannou, R. Amin, B. Gross, and F. Moshary, “Evaluation of the impact of backscatter spectral characteristics on Chl retrievals in coastal waters,” Proc. SPIE 6406 (2006).
[CrossRef]

S. Ahmed, A. Gilerson, J. Zhou, I. Ioannou, B. Gross, and F. Moshary, “Impact of Apparent Fluorescence Shift on Retrieval Algorithms for Coastal Waters,” in Proc. Ocean Optics XVIII, Montreal, Canada (2006).

Jerome, J.H.

R.P. Bukata, J.H. Jerome, K.Y. Kondratyev, and D.V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).

Johns, E.

C. Hu, F.E. Muller-Karger, C.J. Taylor, K.L. Carder, C. Kelble, E. Johns, and C.A. Heil, “Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters,” Remote Sens. Environ. 97, 311–321 (2005).
[CrossRef]

Kelble, C.

C. Hu, F.E. Muller-Karger, C.J. Taylor, K.L. Carder, C. Kelble, E. Johns, and C.A. Heil, “Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters,” Remote Sens. Environ. 97, 311–321 (2005).
[CrossRef]

Kondratyev, K.Y.

R.P. Bukata, J.H. Jerome, K.Y. Kondratyev, and D.V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).

Kronfeld, U.

J. Fischer and U. Kronfeld, “Sun-stimulated chlorophyll fluorescence. 1. Influence of oceanic properties,” Int. J. Remote Sens. 11, 2125–2147 (1990).
[CrossRef]

Ladner, S.D.

R.A. Arnone, Z.P. Lee, P. Martinolich, B. Casey, and S.D. Ladner, “Characterizing the optical properties of coastal waters by coupling 1 km and 250 m channels on MODIS – Terra,” in Proc. Ocean Optics XVI, Santa Fe, New Mexico (2002).

Laney, S. R.

S. R. Laney, R. M. Letelier, and M. R. Abbott, “Parameterizing the natural fluorescence kinetics of Thalassiosira weissflogii,” Limnol. Oceanogr. 50, 1499–1510 (2005).
[CrossRef]

Leavitt, B.

G. Dall’Olmo, A.A. Gitelson, D.C. Rundquist, B. Leavitt, T. Barrow, and J.C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ. 96, 176–187 (2005).
[CrossRef]

Lee, Z. P.

Z. P. Lee, http://www.ioccg.org/groups/OCAG_data.html.

Lee, Z.P.

R.A. Arnone, Z.P. Lee, P. Martinolich, B. Casey, and S.D. Ladner, “Characterizing the optical properties of coastal waters by coupling 1 km and 250 m channels on MODIS – Terra,” in Proc. Ocean Optics XVI, Santa Fe, New Mexico (2002).

Letelier, R. M.

S. R. Laney, R. M. Letelier, and M. R. Abbott, “Parameterizing the natural fluorescence kinetics of Thalassiosira weissflogii,” Limnol. Oceanogr. 50, 1499–1510 (2005).
[CrossRef]

Letelier, R.M.

R.M. Letelier and M.R. Abbott, “An Analysis of Chlorophyll Fluorescence Algorithms for the Moderate Resolution Imaging Spectrometer (MODIS),” Remote Sens. Environ. 58, 215–223 (1996).
[CrossRef]

Lewis, M. R.

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47, 404–417 (2002).
[CrossRef]

Lyaskovsky, A.

D. Pozdnyakov, A. Lyaskovsky, H. Grassl, and L. Petterson, “Numerical modeling of transspectral processes in natural waters: implications for remote sensing,” Int. J. Remote Sens. 23, No 8, 1581–1607 (2002).
[CrossRef]

Macdonald, J. B.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. Scott Pegau, A. H. Barnard, and J. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Maritorena, S.

Martinolich, P.

R.A. Arnone, Z.P. Lee, P. Martinolich, B. Casey, and S.D. Ladner, “Characterizing the optical properties of coastal waters by coupling 1 km and 250 m channels on MODIS – Terra,” in Proc. Ocean Optics XVI, Santa Fe, New Mexico (2002).

McKee, D.

Mobley, C. D.

C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic Press, New York, 1994).

C. D. Mobley and L. K. Sundman, HYDROLIGHT 4.2, Sequoia Scientific, Inc. (2001).

Morel, A.

D. Stramski., A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
[CrossRef]

S. Maritorena, A. Morel, and B. Gentili, “Determination of the fluorescence quantum yield by oceanic phytoplankton in their natural habitat,” Appl. Opt. 39, 6725–6737 (2000).
[CrossRef]

M. Babin, A. Morel, and B. Gentili, “Remote sensing of sea surface Sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence,” Int. J. Remote Sens. 17, 2417–2448 (1996).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N.G. Jerlov and E. S. Nielsen. eds. (Academic, New York, 1974).

Morrison, J. R.

J. R. Morrison, “In situ determination of the quantum yield of phytoplankton chlorophyll a fluorescence: a simple algorithm,observations, and a model,” Limnol. Oceanogr. 48, 618–631 (2003).
[CrossRef]

Moshary, F.

A. Gilerson, J. Zhou, S. Hlaing, I. Ioannou, J. Schalles, B. Gross, F. Moshary, and S. Ahmed, “Fluorescence component in the reflectance spectra from coastal waters. Dependence on water composition,” Opt. Express 15, 15702–15721 (2007).
[CrossRef] [PubMed]

A. Gilerson, J. Zhou, M. Oo, J. Chowdhary, B. Gross, F. Moshary, and S. Ahmed, “Retrieval of fluorescence from reflectance spectra of algae in sea water through polarization discrimination: modeling and experiments,” Appl. Opt. 45, 5568–5581 (2006).
[CrossRef] [PubMed]

S. Ahmed, A. Gilerson, J. Zhou, J. Chowdhary, I. Ioannou, R. Amin, B. Gross, and F. Moshary, “Evaluation of the impact of backscatter spectral characteristics on Chl retrievals in coastal waters,” Proc. SPIE 6406 (2006).
[CrossRef]

S. Ahmed, A. Gilerson, A. Gill, B. M. Gross, F. Moshary, and J. Zhou, “Separation of Fluorescence and Elastic Scattering from Algae in Seawater Using Polarization Discrimination,” Opt. Commun. 235, 23–30 (2004).
[CrossRef]

S. Ahmed, A. Gilerson, J. Zhou, I. Ioannou, B. Gross, and F. Moshary, “Impact of Apparent Fluorescence Shift on Retrieval Algorithms for Coastal Waters,” in Proc. Ocean Optics XVIII, Montreal, Canada (2006).

Muller-Karger, F.E.

C. Hu, F.E. Muller-Karger, C.J. Taylor, K.L. Carder, C. Kelble, E. Johns, and C.A. Heil, “Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters,” Remote Sens. Environ. 97, 311–321 (2005).
[CrossRef]

Oo, M.

Pegau, W. Scott

M. S. Twardowski, E. Boss, J. B. Macdonald, W. Scott Pegau, A. H. Barnard, and J. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Perry, M.J.

C.S. Roesler and M.J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, C7, 13279–13294 (1995).
[CrossRef]

Petterson, L.

D. Pozdnyakov, A. Lyaskovsky, H. Grassl, and L. Petterson, “Numerical modeling of transspectral processes in natural waters: implications for remote sensing,” Int. J. Remote Sens. 23, No 8, 1581–1607 (2002).
[CrossRef]

Pope, R.

Pozdnyakov, D.

D. Pozdnyakov, A. Lyaskovsky, H. Grassl, and L. Petterson, “Numerical modeling of transspectral processes in natural waters: implications for remote sensing,” Int. J. Remote Sens. 23, No 8, 1581–1607 (2002).
[CrossRef]

Pozdnyakov, D.V.

R.P. Bukata, J.H. Jerome, K.Y. Kondratyev, and D.V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).

Roesler, C.S.

C.S. Roesler and M.J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, C7, 13279–13294 (1995).
[CrossRef]

Rundquist, D.C.

G. Dall’Olmo, A.A. Gitelson, D.C. Rundquist, B. Leavitt, T. Barrow, and J.C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ. 96, 176–187 (2005).
[CrossRef]

Schalles, J.

Schalles, J.F.

A.A. Gitelson, J.F. Schalles, and C.M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study,” Remote Sens. of Environ. 109, 464–472, 2007.
[CrossRef]

J.F. Schalles, Optical Remote Sensing Techniques to Estimate Phytoplankton Chlorophyll a Concentrations in Coastal Waters with Varying Suspended Matter and CDOM Concentrations, in Remote Sensing of Aquatic Coastal Ecosystem Processes: Science and Management Applications, L.L. Richardson and E.F. LeDrew, eds. (Springer, 2006), Chap. 3.

Shi, W.

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32, L13606 (2005).
[CrossRef]

Stramski., D.

Sundman, L. K.

C. D. Mobley and L. K. Sundman, HYDROLIGHT 4.2, Sequoia Scientific, Inc. (2001).

Sydor, M.

Taylor, C.J.

C. Hu, F.E. Muller-Karger, C.J. Taylor, K.L. Carder, C. Kelble, E. Johns, and C.A. Heil, “Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters,” Remote Sens. Environ. 97, 311–321 (2005).
[CrossRef]

Twardowski, M. S.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. Scott Pegau, A. H. Barnard, and J. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Voss, K.J.

K.J. Voss, “A spectral model of the beam attenuation coefficient in the ocean and coastal areas,” Limnol. Oceanogr. 37, 501–509 (1992).
[CrossRef]

Wang, M.

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32, L13606 (2005).
[CrossRef]

Wright, D.

Zaneveld, J. V.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. Scott Pegau, A. H. Barnard, and J. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Zhou, J.

A. Gilerson, J. Zhou, and R. Fortich, “Particulate Scattering in Coastal Waters: Chesapeake Bay Study,” Sea Technology 48, 15–18 (2007).

A. Gilerson, J. Zhou, S. Hlaing, I. Ioannou, J. Schalles, B. Gross, F. Moshary, and S. Ahmed, “Fluorescence component in the reflectance spectra from coastal waters. Dependence on water composition,” Opt. Express 15, 15702–15721 (2007).
[CrossRef] [PubMed]

A. Gilerson, J. Zhou, M. Oo, J. Chowdhary, B. Gross, F. Moshary, and S. Ahmed, “Retrieval of fluorescence from reflectance spectra of algae in sea water through polarization discrimination: modeling and experiments,” Appl. Opt. 45, 5568–5581 (2006).
[CrossRef] [PubMed]

S. Ahmed, A. Gilerson, J. Zhou, J. Chowdhary, I. Ioannou, R. Amin, B. Gross, and F. Moshary, “Evaluation of the impact of backscatter spectral characteristics on Chl retrievals in coastal waters,” Proc. SPIE 6406 (2006).
[CrossRef]

S. Ahmed, A. Gilerson, A. Gill, B. M. Gross, F. Moshary, and J. Zhou, “Separation of Fluorescence and Elastic Scattering from Algae in Seawater Using Polarization Discrimination,” Opt. Commun. 235, 23–30 (2004).
[CrossRef]

S. Ahmed, A. Gilerson, J. Zhou, I. Ioannou, B. Gross, and F. Moshary, “Impact of Apparent Fluorescence Shift on Retrieval Algorithms for Coastal Waters,” in Proc. Ocean Optics XVIII, Montreal, Canada (2006).

Appl. Opt. (6)

Can. J. Remote Sens. (1)

J.F.R. Gower, L. Brown, and G.A. Borstad, “Observation of chlorophyll fluorescence in west coast waters of Canada using the MODIS satellite sensor,” Can. J. Remote Sens. 30, 17–25 (2004).
[CrossRef]

Geophys. Res. Lett. (1)

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32, L13606 (2005).
[CrossRef]

Int. J. Remote Sens. (4)

J. Fischer and U. Kronfeld, “Sun-stimulated chlorophyll fluorescence. 1. Influence of oceanic properties,” Int. J. Remote Sens. 11, 2125–2147 (1990).
[CrossRef]

M. Babin, A. Morel, and B. Gentili, “Remote sensing of sea surface Sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence,” Int. J. Remote Sens. 17, 2417–2448 (1996).
[CrossRef]

D. Pozdnyakov, A. Lyaskovsky, H. Grassl, and L. Petterson, “Numerical modeling of transspectral processes in natural waters: implications for remote sensing,” Int. J. Remote Sens. 23, No 8, 1581–1607 (2002).
[CrossRef]

J.F.R. Gower, R. Doerffer, and G.A. Borstad, “Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS,” Int. J. Remote Sens. 20, 1771–1786 (1999).
[CrossRef]

J. Geophys. Res. (3)

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

C.S. Roesler and M.J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, C7, 13279–13294 (1995).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. Scott Pegau, A. H. Barnard, and J. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Limnol. Oceanogr. (5)

K.J. Voss, “A spectral model of the beam attenuation coefficient in the ocean and coastal areas,” Limnol. Oceanogr. 37, 501–509 (1992).
[CrossRef]

W.W. Gregg and K.L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35, 1657–1675 (1990).
[CrossRef]

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47, 404–417 (2002).
[CrossRef]

S. R. Laney, R. M. Letelier, and M. R. Abbott, “Parameterizing the natural fluorescence kinetics of Thalassiosira weissflogii,” Limnol. Oceanogr. 50, 1499–1510 (2005).
[CrossRef]

J. R. Morrison, “In situ determination of the quantum yield of phytoplankton chlorophyll a fluorescence: a simple algorithm,observations, and a model,” Limnol. Oceanogr. 48, 618–631 (2003).
[CrossRef]

Limnol. Oceanogr. Methods (1)

Y. Huot, C. A. Brown, and J. J. Cullen, “New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products,” Limnol. Oceanogr. Methods 3, 108–130 (2005).
[CrossRef]

Opt. Commun. (1)

S. Ahmed, A. Gilerson, A. Gill, B. M. Gross, F. Moshary, and J. Zhou, “Separation of Fluorescence and Elastic Scattering from Algae in Seawater Using Polarization Discrimination,” Opt. Commun. 235, 23–30 (2004).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

S. Ahmed, A. Gilerson, J. Zhou, J. Chowdhary, I. Ioannou, R. Amin, B. Gross, and F. Moshary, “Evaluation of the impact of backscatter spectral characteristics on Chl retrievals in coastal waters,” Proc. SPIE 6406 (2006).
[CrossRef]

Remote Sens. Environ. (3)

C. Hu, F.E. Muller-Karger, C.J. Taylor, K.L. Carder, C. Kelble, E. Johns, and C.A. Heil, “Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters,” Remote Sens. Environ. 97, 311–321 (2005).
[CrossRef]

G. Dall’Olmo, A.A. Gitelson, D.C. Rundquist, B. Leavitt, T. Barrow, and J.C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ. 96, 176–187 (2005).
[CrossRef]

R.M. Letelier and M.R. Abbott, “An Analysis of Chlorophyll Fluorescence Algorithms for the Moderate Resolution Imaging Spectrometer (MODIS),” Remote Sens. Environ. 58, 215–223 (1996).
[CrossRef]

Remote Sens. of Environ. (1)

A.A. Gitelson, J.F. Schalles, and C.M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study,” Remote Sens. of Environ. 109, 464–472, 2007.
[CrossRef]

Sea Technology (1)

A. Gilerson, J. Zhou, and R. Fortich, “Particulate Scattering in Coastal Waters: Chesapeake Bay Study,” Sea Technology 48, 15–18 (2007).

Other (12)

S. Ahmed, A. Gilerson, J. Zhou, I. Ioannou, B. Gross, and F. Moshary, “Impact of Apparent Fluorescence Shift on Retrieval Algorithms for Coastal Waters,” in Proc. Ocean Optics XVIII, Montreal, Canada (2006).

P. Gege and A. Albert, “A tool for inverse modeling of spectral measurements in deep and shallow waters” in Remote Sensing of Aquatic Coastal Ecosystem Processes: Science and Management Applications, L.L. Richardson and E.F. LeDrew, eds. (Springer, 2006), Chap. 4.
[CrossRef]

http://www.oceancolor.gsfc.nasa.gov/seadas

http://www.coastwatch.noaa.gov/hab/bulletins_ns.htm

R.P. Bukata, J.H. Jerome, K.Y. Kondratyev, and D.V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N.G. Jerlov and E. S. Nielsen. eds. (Academic, New York, 1974).

R.A. Arnone, Z.P. Lee, P. Martinolich, B. Casey, and S.D. Ladner, “Characterizing the optical properties of coastal waters by coupling 1 km and 250 m channels on MODIS – Terra,” in Proc. Ocean Optics XVI, Santa Fe, New Mexico (2002).

B. Franz, “MODIS land bands for ocean remote sensing applications,” in Proc. Ocean Optics XVIII, Montreal, Canada (2006).

J.F. Schalles, Optical Remote Sensing Techniques to Estimate Phytoplankton Chlorophyll a Concentrations in Coastal Waters with Varying Suspended Matter and CDOM Concentrations, in Remote Sensing of Aquatic Coastal Ecosystem Processes: Science and Management Applications, L.L. Richardson and E.F. LeDrew, eds. (Springer, 2006), Chap. 3.

Z. P. Lee, http://www.ioccg.org/groups/OCAG_data.html.

C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic Press, New York, 1994).

C. D. Mobley and L. K. Sundman, HYDROLIGHT 4.2, Sequoia Scientific, Inc. (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Specific chlorophyll absorption spectra used in simulations.

Fig. 2.
Fig. 2.

(a) Fluorescence height over baseline, (b) Overlapping of fluorescence and elastic radiance peaks in NIR for two [Chl] values.

Fig. 3.
Fig. 3.

Performance of MODIS (a) and MERIS (b) FLH algorithms with reflectances simulated with specific absorptions Fig. 1. Solid line – superimposed fluorescence amplitude according to expr. (4a), signs – retrieved FLH. Different shapes of signs correspond to different specific chlorophyll absorption spectra. Inset in (a): same data but with correction coefficient k=1.75 applied.

Fig. 4.
Fig. 4.

Performance of FLH algorithm with the optimized position of the center band (a) MODIS with 667, 681, 748 set, k=1.6 (b) MERIS with 665, 685, 753 nm and k=1.1. Solid line – superimposed fluorescence amplitude according to expr. (4a), points – retrieved FLH.

Fig. 5.
Fig. 5.

Performance of MODIS FLH algorithm with the optimized position of the center band at 681 nm and reflectances simulated for decreasing with [Chl] specific absorption (see text), k=1.6. Solid line – superimposed fluorescence amplitude according to expr. (4a), points – retrieved FLH.

Fig. 6.
Fig. 6.

(a) Simulated fluorescence amplitude for dataset 1, (b) Retrieval of FLH from reflectances simulated with fluorescence for dataset 1 using MODIS algorithm.

Fig. 7.
Fig. 7.

Performance of MODIS FLH algorithms with reflectances simulated with (a) Cnap <5 g/m3 and (b) Cnap <10 g/m3. Solid line – superimposed fluorescence amplitude according to expr. (4a), points – retrieved FLH. Inset in (a): same data but with correction coefficient k=1.75 applied.

Fig. 8.
Fig. 8.

Performance of FLH algorithm with the optimized position of the center band (667, 681, 748 nm set). Solid line – superimposed fluorescence amplitude according to expr. (4a), points – retrieved FLH.

Fig. 9.
Fig. 9.

Performance of MODIS (a) and MERIS (b) FLH algorithms with reflectances simulated for high mineral concentrations Cnap =10–100 g/m3. Solid line – superimposed fluorescence magnitude according to expr. (4c), points – retrieved FLH.

Fig. 10.
Fig. 10.

Test of FLH algorithms on Chesapeake Bay field data: (a) standard MODIS and MERIS algorithms; (b) 667, 684, 748 bands. Red lines – linear fits, (a) r2=0.1, (b) r2=0.36.

Fig. 11.
Fig. 11.

(a) [Chl] map for the area of Chesapeake Bay, Delaware Bay and coast between them using MODIS algorithm for August 4, 2005, (b) FLH over [Chl] for this area using MODIS FLH and [Chl] algorithms

Fig. 12.
Fig. 12.

FLH over [Chl] for the area in Fig. 11(a) using MODIS FLH and [Chl] algorithms after applying low mineral condition: a – for all [Chl] values, b – [Chl]<10 mg/m3

Fig. 13.
Fig. 13.

(a) [Chl] map at the Florida west coast in conditions of algae bloom, (b) FLH over [Chl] for that area using MODIS FLH and [Chl] algorithms, [Chl]<10 mg/m3.

Fig. 14.
Fig. 14.

(a) Simulated FLH using MODIS algorithm for dataset 1 and three values of fluorescence quantum efficiency η=0.5, 1 and 2 %, (b) FLH MODIS satellite data for the area from Fig. 11(a) and [Chl]<100 mg/m3.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

a chl * ( λ ) = S f · a pico * ( λ ) + ( 1 S f ) · a micro * ( λ )
F L H = L 2 ( L 3 + ( L 1 L 3 ) * ( λ 3 λ 2 ) ( λ 3 λ 1 ) )
F l = 0.0375 [ C h l ] ( 1 + 0.32 a y ( 400 ) + 0.01 C n a p + 0.032 [ C h l ] )
F l = 0.0375 [ C h l ] ( 1 + 0.8 + 0.032 [ C h l ] )
F l = 0.0375 [ C h l ] ( 1 + 0.85 + 0.032 [ C h l ] )
F l = 0.0375 [ C h l ] ( 1 + 1.3 + 0.032 [ C h l ] )

Metrics