Abstract

We describe a new class of micro-opto-mechanical chemical sensors: A photonic microharp chemical sensor is an array of closely spaced microbridges, each differing slightly in length and coated with a different sorbent polymer. They are optically interrogated using microcavity interferometry and photothermal actuation, and are coupled directly to an optical fiber. Simultaneous measurements of the fundamental flexural resonant frequency of each microbridge allow the real-time detection and discrimination of a variety of vapor-phase analytes, including DMMP at concentrations as low as 17 ppb.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Theory and practice of ubiquitous quantitative chemical analysis using conventional computer optical disk drives

Radislav A. Potyrailo, William G. Morris, Andrew M. Leach, Lamyaa Hassib, Kasiraman Krishnan, Cheryl Surman, Ronald Wroczynski, Scott Boyette, Caibin Xiao, Prashant Shrikhande, Alan Agree, and Ted Cecconie
Appl. Opt. 46(28) 7007-7017 (2007)

Rapid chemical-vapor sensing using optofluidic ring resonators

Yuze Sun, Siyka I. Shopova, Greg Frye-Mason, and Xudong Fan
Opt. Lett. 33(8) 788-790 (2008)

Sensitive voltage interrogation method using electro-optically tunable SPR sensors

Zhiyou Wang, Zheng Zheng, Kun Wang, Yalin Su, Lei Liu, Lusheng Song, Yusheng Bian, Rui Hou, Shaopeng Li, and Jinsong Zhu
Opt. Express 19(27) 26651-26659 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. A. McGill, M. H. Abraham, and J. W. Grate, “Choosing polymer-coatings for chemical sensors,” Chemtech 24(9), 27–37 (1994).
  2. A. J. Ricco, R. M. Crooks, and G. C. Osbourn, “Surface acoustic wave chemical sensor arrays: New chemically sensitive interfaces combined with novel cluster analysis to detect volatile organic compounds and mixtures,” Acc. Chem. Res. 31, 289–296 (1998).
    [Crossref]
  3. S. L. Rose-Pehrsson, J.W. Grate, D. S. Ballantine, and P. C. Jurs, “Detection of hazardous vapors including mixtures using pattern-recognition analysis of responses from surface acoustic-wave devices,” Anal. Chem. 60(24), 2801–2811 (1988).
    [Crossref] [PubMed]
  4. T. Thundat, E. A. Wachter, S. L. Sharp, and R. Warmack, “Detection of mercury-vapor using resonating microcantilevers,” Appl. Phys. Lett. 66, 1695–1697 (1995).
    [Crossref]
  5. N. Abedinov, C. Popov, Z. Yordanov, T. Ivanov, T. Gotszalk, P. Grabiec, W. Kulisch, I.W. Rangelow, D. Filenko, and Y. Shirshov, “Chemical recognition based on micromachined silicon cantilever array,” J. Vac. Sci. Technol. B. 21(6), 2931–2936 (2003).
    [Crossref]
  6. L. R. Senesac, P. Dutta, P. G. Datskos, and M. J. Sepaniak, “Analyte species and concentration identification using differentially functionalized microcantilever arrays and artificial neural networks,” Analytica Chimica Acta 558, 94–101 (2006).
    [Crossref]
  7. H. P. Lang, M. K. Baller, R. Berger, C. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Analytica Chimica Acta 393, 59–65 (1999).
    [Crossref]
  8. N. V. Lavrik and P. G. Datskos, “Femtogram mass detection using photothermally actuated nanomechanical resonators,” Appl. Phys. Lett. 82, 2697–2699 (2003).
    [Crossref]
  9. L. A. Pinnaduwage, V. Boiadjiev, J. E. Hawk, and T. Thundat, “Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers,” Appl. Phys. Lett. 83(7), 1471–1473 (2003).
    [Crossref]
  10. J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
    [Crossref] [PubMed]
  11. T. H. Stievater, W. S. Rabinovich, H. S. Newman, R. Mahon, D. McGee, and P. G. Goetz, “Measurement of Thermal-Mechanical Noise in Microelectromechanical Systems,” Appl. Phys. Lett. 81, 1779–1781 (2002).
    [Crossref]
  12. E. A. Wachter, T. Thundat, P. I. Oden, R. J. Warmack, P. G. Datskos, and S. L. Sharp, “Remote optical detection using microcantilevers,” Rev. Sci. Instrum. 67(10), 3434–3439 (1996).
    [Crossref]
  13. T. H. Stievater, W. S. Rabinovich, R. Mahon, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. Bass, R. A. McGill, and J. Stepnowski, “Remote All-Optical Detection of Chemical Vapors using Micromechanical Resonators,” in Nanoelectronic Devices for Defense and Security (NANO-DDS) Conference (DOD-DTRA, Arlington, VA, USA, 2007).
  14. D. W. Carr and H. G. Craighead, “Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography,” vol.  15, pp. 2760–2763 (AVS, 1997).
  15. T. H. Stievater, W. S. Rabinovich, H. S. Newman, J. L. Ebel, R. Mahon, D. J. McGee, and P. G. Goetz, “Microcavity Interferometry for MEMS Device Characterization,” J. Microelectromech. Syst. 12, 109–116 (2003).
    [Crossref]
  16. T. H. Stievater, W. S. Rabinovich, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. A. McGill, and J. L. Stepnowski, “All-Optical Micromechanical Chemical Sensors,” Appl. Phys. Lett. 89, 091,125 (2006).
    [Crossref]
  17. T. B. Gabrielson, “Mechanical-thermal noise in micromachined acoustic and vibration sensors,” IEEE Trans. Electron. Devices 40, 903–909 (1993).
    [Crossref]
  18. T. H. Stievater, W. S. Rabinovich, N. A. Papanicolaou, R. Bass, and J. B. Boos, “Measured limits of detection based on thermal-mechanical frequency noise in micromechanical sensors,” Appl. Phys. Lett. 90(5), 051114 (pages 3) (2007). URL http://link.aip.org/link/?APL/90/051114/1.
    [Crossref]
  19. G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42, 1611–1617 (2003).
    [Crossref]
  20. T. Veijola, “Compact models for squeezed-film dampers with inertial and rarefied gas effects,” J. Micromech. Microeng. 14, 1109–1118 (2004).
    [Crossref]
  21. “Linear and hyperbranched hydrogen bond acidic poly(silylene-methylene)s for chemical sensor applications,” in ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, vol. 225 of 316-PMSE Part 2 (2003).

2007 (1)

T. H. Stievater, W. S. Rabinovich, N. A. Papanicolaou, R. Bass, and J. B. Boos, “Measured limits of detection based on thermal-mechanical frequency noise in micromechanical sensors,” Appl. Phys. Lett. 90(5), 051114 (pages 3) (2007). URL http://link.aip.org/link/?APL/90/051114/1.
[Crossref]

2006 (2)

T. H. Stievater, W. S. Rabinovich, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. A. McGill, and J. L. Stepnowski, “All-Optical Micromechanical Chemical Sensors,” Appl. Phys. Lett. 89, 091,125 (2006).
[Crossref]

L. R. Senesac, P. Dutta, P. G. Datskos, and M. J. Sepaniak, “Analyte species and concentration identification using differentially functionalized microcantilever arrays and artificial neural networks,” Analytica Chimica Acta 558, 94–101 (2006).
[Crossref]

2004 (1)

T. Veijola, “Compact models for squeezed-film dampers with inertial and rarefied gas effects,” J. Micromech. Microeng. 14, 1109–1118 (2004).
[Crossref]

2003 (5)

T. H. Stievater, W. S. Rabinovich, H. S. Newman, J. L. Ebel, R. Mahon, D. J. McGee, and P. G. Goetz, “Microcavity Interferometry for MEMS Device Characterization,” J. Microelectromech. Syst. 12, 109–116 (2003).
[Crossref]

N. V. Lavrik and P. G. Datskos, “Femtogram mass detection using photothermally actuated nanomechanical resonators,” Appl. Phys. Lett. 82, 2697–2699 (2003).
[Crossref]

L. A. Pinnaduwage, V. Boiadjiev, J. E. Hawk, and T. Thundat, “Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers,” Appl. Phys. Lett. 83(7), 1471–1473 (2003).
[Crossref]

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42, 1611–1617 (2003).
[Crossref]

N. Abedinov, C. Popov, Z. Yordanov, T. Ivanov, T. Gotszalk, P. Grabiec, W. Kulisch, I.W. Rangelow, D. Filenko, and Y. Shirshov, “Chemical recognition based on micromachined silicon cantilever array,” J. Vac. Sci. Technol. B. 21(6), 2931–2936 (2003).
[Crossref]

2002 (1)

T. H. Stievater, W. S. Rabinovich, H. S. Newman, R. Mahon, D. McGee, and P. G. Goetz, “Measurement of Thermal-Mechanical Noise in Microelectromechanical Systems,” Appl. Phys. Lett. 81, 1779–1781 (2002).
[Crossref]

2000 (1)

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

1999 (1)

H. P. Lang, M. K. Baller, R. Berger, C. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Analytica Chimica Acta 393, 59–65 (1999).
[Crossref]

1998 (1)

A. J. Ricco, R. M. Crooks, and G. C. Osbourn, “Surface acoustic wave chemical sensor arrays: New chemically sensitive interfaces combined with novel cluster analysis to detect volatile organic compounds and mixtures,” Acc. Chem. Res. 31, 289–296 (1998).
[Crossref]

1997 (1)

D. W. Carr and H. G. Craighead, “Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography,” vol.  15, pp. 2760–2763 (AVS, 1997).

1996 (1)

E. A. Wachter, T. Thundat, P. I. Oden, R. J. Warmack, P. G. Datskos, and S. L. Sharp, “Remote optical detection using microcantilevers,” Rev. Sci. Instrum. 67(10), 3434–3439 (1996).
[Crossref]

1995 (1)

T. Thundat, E. A. Wachter, S. L. Sharp, and R. Warmack, “Detection of mercury-vapor using resonating microcantilevers,” Appl. Phys. Lett. 66, 1695–1697 (1995).
[Crossref]

1994 (1)

R. A. McGill, M. H. Abraham, and J. W. Grate, “Choosing polymer-coatings for chemical sensors,” Chemtech 24(9), 27–37 (1994).

1993 (1)

T. B. Gabrielson, “Mechanical-thermal noise in micromachined acoustic and vibration sensors,” IEEE Trans. Electron. Devices 40, 903–909 (1993).
[Crossref]

1988 (1)

S. L. Rose-Pehrsson, J.W. Grate, D. S. Ballantine, and P. C. Jurs, “Detection of hazardous vapors including mixtures using pattern-recognition analysis of responses from surface acoustic-wave devices,” Anal. Chem. 60(24), 2801–2811 (1988).
[Crossref] [PubMed]

Abedinov, N.

N. Abedinov, C. Popov, Z. Yordanov, T. Ivanov, T. Gotszalk, P. Grabiec, W. Kulisch, I.W. Rangelow, D. Filenko, and Y. Shirshov, “Chemical recognition based on micromachined silicon cantilever array,” J. Vac. Sci. Technol. B. 21(6), 2931–2936 (2003).
[Crossref]

Abraham, M. H.

R. A. McGill, M. H. Abraham, and J. W. Grate, “Choosing polymer-coatings for chemical sensors,” Chemtech 24(9), 27–37 (1994).

Ballantine, D. S.

S. L. Rose-Pehrsson, J.W. Grate, D. S. Ballantine, and P. C. Jurs, “Detection of hazardous vapors including mixtures using pattern-recognition analysis of responses from surface acoustic-wave devices,” Anal. Chem. 60(24), 2801–2811 (1988).
[Crossref] [PubMed]

Baller, M. K.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

H. P. Lang, M. K. Baller, R. Berger, C. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Analytica Chimica Acta 393, 59–65 (1999).
[Crossref]

Bass, R.

T. H. Stievater, W. S. Rabinovich, N. A. Papanicolaou, R. Bass, and J. B. Boos, “Measured limits of detection based on thermal-mechanical frequency noise in micromechanical sensors,” Appl. Phys. Lett. 90(5), 051114 (pages 3) (2007). URL http://link.aip.org/link/?APL/90/051114/1.
[Crossref]

T. H. Stievater, W. S. Rabinovich, R. Mahon, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. Bass, R. A. McGill, and J. Stepnowski, “Remote All-Optical Detection of Chemical Vapors using Micromechanical Resonators,” in Nanoelectronic Devices for Defense and Security (NANO-DDS) Conference (DOD-DTRA, Arlington, VA, USA, 2007).

Battiston, F. M.

H. P. Lang, M. K. Baller, R. Berger, C. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Analytica Chimica Acta 393, 59–65 (1999).
[Crossref]

Berger, R.

H. P. Lang, M. K. Baller, R. Berger, C. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Analytica Chimica Acta 393, 59–65 (1999).
[Crossref]

Boiadjiev, V.

L. A. Pinnaduwage, V. Boiadjiev, J. E. Hawk, and T. Thundat, “Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers,” Appl. Phys. Lett. 83(7), 1471–1473 (2003).
[Crossref]

Boos, J. B.

T. H. Stievater, W. S. Rabinovich, N. A. Papanicolaou, R. Bass, and J. B. Boos, “Measured limits of detection based on thermal-mechanical frequency noise in micromechanical sensors,” Appl. Phys. Lett. 90(5), 051114 (pages 3) (2007). URL http://link.aip.org/link/?APL/90/051114/1.
[Crossref]

T. H. Stievater, W. S. Rabinovich, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. A. McGill, and J. L. Stepnowski, “All-Optical Micromechanical Chemical Sensors,” Appl. Phys. Lett. 89, 091,125 (2006).
[Crossref]

T. H. Stievater, W. S. Rabinovich, R. Mahon, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. Bass, R. A. McGill, and J. Stepnowski, “Remote All-Optical Detection of Chemical Vapors using Micromechanical Resonators,” in Nanoelectronic Devices for Defense and Security (NANO-DDS) Conference (DOD-DTRA, Arlington, VA, USA, 2007).

Carr, D. W.

D. W. Carr and H. G. Craighead, “Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography,” vol.  15, pp. 2760–2763 (AVS, 1997).

Cochrell, K.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42, 1611–1617 (2003).
[Crossref]

Craighead, H. G.

D. W. Carr and H. G. Craighead, “Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography,” vol.  15, pp. 2760–2763 (AVS, 1997).

Crooks, R. M.

A. J. Ricco, R. M. Crooks, and G. C. Osbourn, “Surface acoustic wave chemical sensor arrays: New chemically sensitive interfaces combined with novel cluster analysis to detect volatile organic compounds and mixtures,” Acc. Chem. Res. 31, 289–296 (1998).
[Crossref]

Datskos, P. G.

L. R. Senesac, P. Dutta, P. G. Datskos, and M. J. Sepaniak, “Analyte species and concentration identification using differentially functionalized microcantilever arrays and artificial neural networks,” Analytica Chimica Acta 558, 94–101 (2006).
[Crossref]

N. V. Lavrik and P. G. Datskos, “Femtogram mass detection using photothermally actuated nanomechanical resonators,” Appl. Phys. Lett. 82, 2697–2699 (2003).
[Crossref]

E. A. Wachter, T. Thundat, P. I. Oden, R. J. Warmack, P. G. Datskos, and S. L. Sharp, “Remote optical detection using microcantilevers,” Rev. Sci. Instrum. 67(10), 3434–3439 (1996).
[Crossref]

Dutta, P.

L. R. Senesac, P. Dutta, P. G. Datskos, and M. J. Sepaniak, “Analyte species and concentration identification using differentially functionalized microcantilever arrays and artificial neural networks,” Analytica Chimica Acta 558, 94–101 (2006).
[Crossref]

Ebel, J. L.

T. H. Stievater, W. S. Rabinovich, H. S. Newman, J. L. Ebel, R. Mahon, D. J. McGee, and P. G. Goetz, “Microcavity Interferometry for MEMS Device Characterization,” J. Microelectromech. Syst. 12, 109–116 (2003).
[Crossref]

Ferraro, M. S.

T. H. Stievater, W. S. Rabinovich, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. A. McGill, and J. L. Stepnowski, “All-Optical Micromechanical Chemical Sensors,” Appl. Phys. Lett. 89, 091,125 (2006).
[Crossref]

T. H. Stievater, W. S. Rabinovich, R. Mahon, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. Bass, R. A. McGill, and J. Stepnowski, “Remote All-Optical Detection of Chemical Vapors using Micromechanical Resonators,” in Nanoelectronic Devices for Defense and Security (NANO-DDS) Conference (DOD-DTRA, Arlington, VA, USA, 2007).

Filenko, D.

N. Abedinov, C. Popov, Z. Yordanov, T. Ivanov, T. Gotszalk, P. Grabiec, W. Kulisch, I.W. Rangelow, D. Filenko, and Y. Shirshov, “Chemical recognition based on micromachined silicon cantilever array,” J. Vac. Sci. Technol. B. 21(6), 2931–2936 (2003).
[Crossref]

Fornaro, P.

H. P. Lang, M. K. Baller, R. Berger, C. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Analytica Chimica Acta 393, 59–65 (1999).
[Crossref]

Fritz, J.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

Gabrielson, T. B.

T. B. Gabrielson, “Mechanical-thermal noise in micromachined acoustic and vibration sensors,” IEEE Trans. Electron. Devices 40, 903–909 (1993).
[Crossref]

Gerber, C.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

H. P. Lang, M. K. Baller, R. Berger, C. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Analytica Chimica Acta 393, 59–65 (1999).
[Crossref]

Gilbreath, G. C.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42, 1611–1617 (2003).
[Crossref]

Gimzewski, J. K.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

H. P. Lang, M. K. Baller, R. Berger, C. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Analytica Chimica Acta 393, 59–65 (1999).
[Crossref]

Goetz, P. G.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42, 1611–1617 (2003).
[Crossref]

T. H. Stievater, W. S. Rabinovich, H. S. Newman, J. L. Ebel, R. Mahon, D. J. McGee, and P. G. Goetz, “Microcavity Interferometry for MEMS Device Characterization,” J. Microelectromech. Syst. 12, 109–116 (2003).
[Crossref]

T. H. Stievater, W. S. Rabinovich, H. S. Newman, R. Mahon, D. McGee, and P. G. Goetz, “Measurement of Thermal-Mechanical Noise in Microelectromechanical Systems,” Appl. Phys. Lett. 81, 1779–1781 (2002).
[Crossref]

Gotszalk, T.

N. Abedinov, C. Popov, Z. Yordanov, T. Ivanov, T. Gotszalk, P. Grabiec, W. Kulisch, I.W. Rangelow, D. Filenko, and Y. Shirshov, “Chemical recognition based on micromachined silicon cantilever array,” J. Vac. Sci. Technol. B. 21(6), 2931–2936 (2003).
[Crossref]

Grabiec, P.

N. Abedinov, C. Popov, Z. Yordanov, T. Ivanov, T. Gotszalk, P. Grabiec, W. Kulisch, I.W. Rangelow, D. Filenko, and Y. Shirshov, “Chemical recognition based on micromachined silicon cantilever array,” J. Vac. Sci. Technol. B. 21(6), 2931–2936 (2003).
[Crossref]

Grate, J. W.

R. A. McGill, M. H. Abraham, and J. W. Grate, “Choosing polymer-coatings for chemical sensors,” Chemtech 24(9), 27–37 (1994).

Grate, J.W.

S. L. Rose-Pehrsson, J.W. Grate, D. S. Ballantine, and P. C. Jurs, “Detection of hazardous vapors including mixtures using pattern-recognition analysis of responses from surface acoustic-wave devices,” Anal. Chem. 60(24), 2801–2811 (1988).
[Crossref] [PubMed]

Güntherodt, H. J.

H. P. Lang, M. K. Baller, R. Berger, C. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Analytica Chimica Acta 393, 59–65 (1999).
[Crossref]

Güntherodt, H.-J.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

Hawk, J. E.

L. A. Pinnaduwage, V. Boiadjiev, J. E. Hawk, and T. Thundat, “Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers,” Appl. Phys. Lett. 83(7), 1471–1473 (2003).
[Crossref]

Ivanov, T.

N. Abedinov, C. Popov, Z. Yordanov, T. Ivanov, T. Gotszalk, P. Grabiec, W. Kulisch, I.W. Rangelow, D. Filenko, and Y. Shirshov, “Chemical recognition based on micromachined silicon cantilever array,” J. Vac. Sci. Technol. B. 21(6), 2931–2936 (2003).
[Crossref]

Jurs, P. C.

S. L. Rose-Pehrsson, J.W. Grate, D. S. Ballantine, and P. C. Jurs, “Detection of hazardous vapors including mixtures using pattern-recognition analysis of responses from surface acoustic-wave devices,” Anal. Chem. 60(24), 2801–2811 (1988).
[Crossref] [PubMed]

Kulisch, W.

N. Abedinov, C. Popov, Z. Yordanov, T. Ivanov, T. Gotszalk, P. Grabiec, W. Kulisch, I.W. Rangelow, D. Filenko, and Y. Shirshov, “Chemical recognition based on micromachined silicon cantilever array,” J. Vac. Sci. Technol. B. 21(6), 2931–2936 (2003).
[Crossref]

Lang, H. P.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

H. P. Lang, M. K. Baller, R. Berger, C. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Analytica Chimica Acta 393, 59–65 (1999).
[Crossref]

Lavrik, N. V.

N. V. Lavrik and P. G. Datskos, “Femtogram mass detection using photothermally actuated nanomechanical resonators,” Appl. Phys. Lett. 82, 2697–2699 (2003).
[Crossref]

Lucke, R. L.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42, 1611–1617 (2003).
[Crossref]

Mahon, R.

T. H. Stievater, W. S. Rabinovich, H. S. Newman, J. L. Ebel, R. Mahon, D. J. McGee, and P. G. Goetz, “Microcavity Interferometry for MEMS Device Characterization,” J. Microelectromech. Syst. 12, 109–116 (2003).
[Crossref]

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42, 1611–1617 (2003).
[Crossref]

T. H. Stievater, W. S. Rabinovich, H. S. Newman, R. Mahon, D. McGee, and P. G. Goetz, “Measurement of Thermal-Mechanical Noise in Microelectromechanical Systems,” Appl. Phys. Lett. 81, 1779–1781 (2002).
[Crossref]

T. H. Stievater, W. S. Rabinovich, R. Mahon, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. Bass, R. A. McGill, and J. Stepnowski, “Remote All-Optical Detection of Chemical Vapors using Micromechanical Resonators,” in Nanoelectronic Devices for Defense and Security (NANO-DDS) Conference (DOD-DTRA, Arlington, VA, USA, 2007).

McGee, D.

T. H. Stievater, W. S. Rabinovich, H. S. Newman, R. Mahon, D. McGee, and P. G. Goetz, “Measurement of Thermal-Mechanical Noise in Microelectromechanical Systems,” Appl. Phys. Lett. 81, 1779–1781 (2002).
[Crossref]

McGee, D. J.

T. H. Stievater, W. S. Rabinovich, H. S. Newman, J. L. Ebel, R. Mahon, D. J. McGee, and P. G. Goetz, “Microcavity Interferometry for MEMS Device Characterization,” J. Microelectromech. Syst. 12, 109–116 (2003).
[Crossref]

McGill, R. A.

T. H. Stievater, W. S. Rabinovich, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. A. McGill, and J. L. Stepnowski, “All-Optical Micromechanical Chemical Sensors,” Appl. Phys. Lett. 89, 091,125 (2006).
[Crossref]

R. A. McGill, M. H. Abraham, and J. W. Grate, “Choosing polymer-coatings for chemical sensors,” Chemtech 24(9), 27–37 (1994).

T. H. Stievater, W. S. Rabinovich, R. Mahon, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. Bass, R. A. McGill, and J. Stepnowski, “Remote All-Optical Detection of Chemical Vapors using Micromechanical Resonators,” in Nanoelectronic Devices for Defense and Security (NANO-DDS) Conference (DOD-DTRA, Arlington, VA, USA, 2007).

Meehan, T. J.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42, 1611–1617 (2003).
[Crossref]

Meyer, E.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

H. P. Lang, M. K. Baller, R. Berger, C. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Analytica Chimica Acta 393, 59–65 (1999).
[Crossref]

Mozersky, S.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42, 1611–1617 (2003).
[Crossref]

Newman, H. S.

T. H. Stievater, W. S. Rabinovich, H. S. Newman, J. L. Ebel, R. Mahon, D. J. McGee, and P. G. Goetz, “Microcavity Interferometry for MEMS Device Characterization,” J. Microelectromech. Syst. 12, 109–116 (2003).
[Crossref]

T. H. Stievater, W. S. Rabinovich, H. S. Newman, R. Mahon, D. McGee, and P. G. Goetz, “Measurement of Thermal-Mechanical Noise in Microelectromechanical Systems,” Appl. Phys. Lett. 81, 1779–1781 (2002).
[Crossref]

Oden, P. I.

E. A. Wachter, T. Thundat, P. I. Oden, R. J. Warmack, P. G. Datskos, and S. L. Sharp, “Remote optical detection using microcantilevers,” Rev. Sci. Instrum. 67(10), 3434–3439 (1996).
[Crossref]

Oh, E.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42, 1611–1617 (2003).
[Crossref]

Osbourn, G. C.

A. J. Ricco, R. M. Crooks, and G. C. Osbourn, “Surface acoustic wave chemical sensor arrays: New chemically sensitive interfaces combined with novel cluster analysis to detect volatile organic compounds and mixtures,” Acc. Chem. Res. 31, 289–296 (1998).
[Crossref]

Papanicolaou, N. A.

T. H. Stievater, W. S. Rabinovich, N. A. Papanicolaou, R. Bass, and J. B. Boos, “Measured limits of detection based on thermal-mechanical frequency noise in micromechanical sensors,” Appl. Phys. Lett. 90(5), 051114 (pages 3) (2007). URL http://link.aip.org/link/?APL/90/051114/1.
[Crossref]

T. H. Stievater, W. S. Rabinovich, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. A. McGill, and J. L. Stepnowski, “All-Optical Micromechanical Chemical Sensors,” Appl. Phys. Lett. 89, 091,125 (2006).
[Crossref]

T. H. Stievater, W. S. Rabinovich, R. Mahon, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. Bass, R. A. McGill, and J. Stepnowski, “Remote All-Optical Detection of Chemical Vapors using Micromechanical Resonators,” in Nanoelectronic Devices for Defense and Security (NANO-DDS) Conference (DOD-DTRA, Arlington, VA, USA, 2007).

Pinnaduwage, L. A.

L. A. Pinnaduwage, V. Boiadjiev, J. E. Hawk, and T. Thundat, “Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers,” Appl. Phys. Lett. 83(7), 1471–1473 (2003).
[Crossref]

Popov, C.

N. Abedinov, C. Popov, Z. Yordanov, T. Ivanov, T. Gotszalk, P. Grabiec, W. Kulisch, I.W. Rangelow, D. Filenko, and Y. Shirshov, “Chemical recognition based on micromachined silicon cantilever array,” J. Vac. Sci. Technol. B. 21(6), 2931–2936 (2003).
[Crossref]

Rabinovich, W. S.

T. H. Stievater, W. S. Rabinovich, N. A. Papanicolaou, R. Bass, and J. B. Boos, “Measured limits of detection based on thermal-mechanical frequency noise in micromechanical sensors,” Appl. Phys. Lett. 90(5), 051114 (pages 3) (2007). URL http://link.aip.org/link/?APL/90/051114/1.
[Crossref]

T. H. Stievater, W. S. Rabinovich, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. A. McGill, and J. L. Stepnowski, “All-Optical Micromechanical Chemical Sensors,” Appl. Phys. Lett. 89, 091,125 (2006).
[Crossref]

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42, 1611–1617 (2003).
[Crossref]

T. H. Stievater, W. S. Rabinovich, H. S. Newman, J. L. Ebel, R. Mahon, D. J. McGee, and P. G. Goetz, “Microcavity Interferometry for MEMS Device Characterization,” J. Microelectromech. Syst. 12, 109–116 (2003).
[Crossref]

T. H. Stievater, W. S. Rabinovich, H. S. Newman, R. Mahon, D. McGee, and P. G. Goetz, “Measurement of Thermal-Mechanical Noise in Microelectromechanical Systems,” Appl. Phys. Lett. 81, 1779–1781 (2002).
[Crossref]

T. H. Stievater, W. S. Rabinovich, R. Mahon, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. Bass, R. A. McGill, and J. Stepnowski, “Remote All-Optical Detection of Chemical Vapors using Micromechanical Resonators,” in Nanoelectronic Devices for Defense and Security (NANO-DDS) Conference (DOD-DTRA, Arlington, VA, USA, 2007).

Ramseyer, J. P.

H. P. Lang, M. K. Baller, R. Berger, C. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Analytica Chimica Acta 393, 59–65 (1999).
[Crossref]

Rangelow, I.W.

N. Abedinov, C. Popov, Z. Yordanov, T. Ivanov, T. Gotszalk, P. Grabiec, W. Kulisch, I.W. Rangelow, D. Filenko, and Y. Shirshov, “Chemical recognition based on micromachined silicon cantilever array,” J. Vac. Sci. Technol. B. 21(6), 2931–2936 (2003).
[Crossref]

Ricco, A. J.

A. J. Ricco, R. M. Crooks, and G. C. Osbourn, “Surface acoustic wave chemical sensor arrays: New chemically sensitive interfaces combined with novel cluster analysis to detect volatile organic compounds and mixtures,” Acc. Chem. Res. 31, 289–296 (1998).
[Crossref]

Rose-Pehrsson, S. L.

S. L. Rose-Pehrsson, J.W. Grate, D. S. Ballantine, and P. C. Jurs, “Detection of hazardous vapors including mixtures using pattern-recognition analysis of responses from surface acoustic-wave devices,” Anal. Chem. 60(24), 2801–2811 (1988).
[Crossref] [PubMed]

Rothuizen, H.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

Senesac, L. R.

L. R. Senesac, P. Dutta, P. G. Datskos, and M. J. Sepaniak, “Analyte species and concentration identification using differentially functionalized microcantilever arrays and artificial neural networks,” Analytica Chimica Acta 558, 94–101 (2006).
[Crossref]

Sepaniak, M. J.

L. R. Senesac, P. Dutta, P. G. Datskos, and M. J. Sepaniak, “Analyte species and concentration identification using differentially functionalized microcantilever arrays and artificial neural networks,” Analytica Chimica Acta 558, 94–101 (2006).
[Crossref]

Sharp, S. L.

E. A. Wachter, T. Thundat, P. I. Oden, R. J. Warmack, P. G. Datskos, and S. L. Sharp, “Remote optical detection using microcantilevers,” Rev. Sci. Instrum. 67(10), 3434–3439 (1996).
[Crossref]

T. Thundat, E. A. Wachter, S. L. Sharp, and R. Warmack, “Detection of mercury-vapor using resonating microcantilevers,” Appl. Phys. Lett. 66, 1695–1697 (1995).
[Crossref]

Shirshov, Y.

N. Abedinov, C. Popov, Z. Yordanov, T. Ivanov, T. Gotszalk, P. Grabiec, W. Kulisch, I.W. Rangelow, D. Filenko, and Y. Shirshov, “Chemical recognition based on micromachined silicon cantilever array,” J. Vac. Sci. Technol. B. 21(6), 2931–2936 (2003).
[Crossref]

Stell, M.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42, 1611–1617 (2003).
[Crossref]

Stepnowski, J.

T. H. Stievater, W. S. Rabinovich, R. Mahon, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. Bass, R. A. McGill, and J. Stepnowski, “Remote All-Optical Detection of Chemical Vapors using Micromechanical Resonators,” in Nanoelectronic Devices for Defense and Security (NANO-DDS) Conference (DOD-DTRA, Arlington, VA, USA, 2007).

Stepnowski, J. L.

T. H. Stievater, W. S. Rabinovich, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. A. McGill, and J. L. Stepnowski, “All-Optical Micromechanical Chemical Sensors,” Appl. Phys. Lett. 89, 091,125 (2006).
[Crossref]

Stievater, T. H.

T. H. Stievater, W. S. Rabinovich, N. A. Papanicolaou, R. Bass, and J. B. Boos, “Measured limits of detection based on thermal-mechanical frequency noise in micromechanical sensors,” Appl. Phys. Lett. 90(5), 051114 (pages 3) (2007). URL http://link.aip.org/link/?APL/90/051114/1.
[Crossref]

T. H. Stievater, W. S. Rabinovich, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. A. McGill, and J. L. Stepnowski, “All-Optical Micromechanical Chemical Sensors,” Appl. Phys. Lett. 89, 091,125 (2006).
[Crossref]

T. H. Stievater, W. S. Rabinovich, H. S. Newman, J. L. Ebel, R. Mahon, D. J. McGee, and P. G. Goetz, “Microcavity Interferometry for MEMS Device Characterization,” J. Microelectromech. Syst. 12, 109–116 (2003).
[Crossref]

T. H. Stievater, W. S. Rabinovich, H. S. Newman, R. Mahon, D. McGee, and P. G. Goetz, “Measurement of Thermal-Mechanical Noise in Microelectromechanical Systems,” Appl. Phys. Lett. 81, 1779–1781 (2002).
[Crossref]

T. H. Stievater, W. S. Rabinovich, R. Mahon, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. Bass, R. A. McGill, and J. Stepnowski, “Remote All-Optical Detection of Chemical Vapors using Micromechanical Resonators,” in Nanoelectronic Devices for Defense and Security (NANO-DDS) Conference (DOD-DTRA, Arlington, VA, USA, 2007).

Thundat, T.

L. A. Pinnaduwage, V. Boiadjiev, J. E. Hawk, and T. Thundat, “Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers,” Appl. Phys. Lett. 83(7), 1471–1473 (2003).
[Crossref]

E. A. Wachter, T. Thundat, P. I. Oden, R. J. Warmack, P. G. Datskos, and S. L. Sharp, “Remote optical detection using microcantilevers,” Rev. Sci. Instrum. 67(10), 3434–3439 (1996).
[Crossref]

T. Thundat, E. A. Wachter, S. L. Sharp, and R. Warmack, “Detection of mercury-vapor using resonating microcantilevers,” Appl. Phys. Lett. 66, 1695–1697 (1995).
[Crossref]

Vasquez, J. A.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42, 1611–1617 (2003).
[Crossref]

Veijola, T.

T. Veijola, “Compact models for squeezed-film dampers with inertial and rarefied gas effects,” J. Micromech. Microeng. 14, 1109–1118 (2004).
[Crossref]

Vettiger, P.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

Vilcheck, M. J.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42, 1611–1617 (2003).
[Crossref]

Wachter, E. A.

E. A. Wachter, T. Thundat, P. I. Oden, R. J. Warmack, P. G. Datskos, and S. L. Sharp, “Remote optical detection using microcantilevers,” Rev. Sci. Instrum. 67(10), 3434–3439 (1996).
[Crossref]

T. Thundat, E. A. Wachter, S. L. Sharp, and R. Warmack, “Detection of mercury-vapor using resonating microcantilevers,” Appl. Phys. Lett. 66, 1695–1697 (1995).
[Crossref]

Warmack, R.

T. Thundat, E. A. Wachter, S. L. Sharp, and R. Warmack, “Detection of mercury-vapor using resonating microcantilevers,” Appl. Phys. Lett. 66, 1695–1697 (1995).
[Crossref]

Warmack, R. J.

E. A. Wachter, T. Thundat, P. I. Oden, R. J. Warmack, P. G. Datskos, and S. L. Sharp, “Remote optical detection using microcantilevers,” Rev. Sci. Instrum. 67(10), 3434–3439 (1996).
[Crossref]

Yordanov, Z.

N. Abedinov, C. Popov, Z. Yordanov, T. Ivanov, T. Gotszalk, P. Grabiec, W. Kulisch, I.W. Rangelow, D. Filenko, and Y. Shirshov, “Chemical recognition based on micromachined silicon cantilever array,” J. Vac. Sci. Technol. B. 21(6), 2931–2936 (2003).
[Crossref]

Acc. Chem. Res. (1)

A. J. Ricco, R. M. Crooks, and G. C. Osbourn, “Surface acoustic wave chemical sensor arrays: New chemically sensitive interfaces combined with novel cluster analysis to detect volatile organic compounds and mixtures,” Acc. Chem. Res. 31, 289–296 (1998).
[Crossref]

Anal. Chem. (1)

S. L. Rose-Pehrsson, J.W. Grate, D. S. Ballantine, and P. C. Jurs, “Detection of hazardous vapors including mixtures using pattern-recognition analysis of responses from surface acoustic-wave devices,” Anal. Chem. 60(24), 2801–2811 (1988).
[Crossref] [PubMed]

Analytica Chimica Acta (2)

L. R. Senesac, P. Dutta, P. G. Datskos, and M. J. Sepaniak, “Analyte species and concentration identification using differentially functionalized microcantilever arrays and artificial neural networks,” Analytica Chimica Acta 558, 94–101 (2006).
[Crossref]

H. P. Lang, M. K. Baller, R. Berger, C. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, “An artificial nose based on a micromechanical cantilever array,” Analytica Chimica Acta 393, 59–65 (1999).
[Crossref]

Appl. Phys. Lett. (6)

N. V. Lavrik and P. G. Datskos, “Femtogram mass detection using photothermally actuated nanomechanical resonators,” Appl. Phys. Lett. 82, 2697–2699 (2003).
[Crossref]

L. A. Pinnaduwage, V. Boiadjiev, J. E. Hawk, and T. Thundat, “Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers,” Appl. Phys. Lett. 83(7), 1471–1473 (2003).
[Crossref]

T. Thundat, E. A. Wachter, S. L. Sharp, and R. Warmack, “Detection of mercury-vapor using resonating microcantilevers,” Appl. Phys. Lett. 66, 1695–1697 (1995).
[Crossref]

T. H. Stievater, W. S. Rabinovich, H. S. Newman, R. Mahon, D. McGee, and P. G. Goetz, “Measurement of Thermal-Mechanical Noise in Microelectromechanical Systems,” Appl. Phys. Lett. 81, 1779–1781 (2002).
[Crossref]

T. H. Stievater, W. S. Rabinovich, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. A. McGill, and J. L. Stepnowski, “All-Optical Micromechanical Chemical Sensors,” Appl. Phys. Lett. 89, 091,125 (2006).
[Crossref]

T. H. Stievater, W. S. Rabinovich, N. A. Papanicolaou, R. Bass, and J. B. Boos, “Measured limits of detection based on thermal-mechanical frequency noise in micromechanical sensors,” Appl. Phys. Lett. 90(5), 051114 (pages 3) (2007). URL http://link.aip.org/link/?APL/90/051114/1.
[Crossref]

Chemtech (1)

R. A. McGill, M. H. Abraham, and J. W. Grate, “Choosing polymer-coatings for chemical sensors,” Chemtech 24(9), 27–37 (1994).

IEEE Trans. Electron. Devices (1)

T. B. Gabrielson, “Mechanical-thermal noise in micromachined acoustic and vibration sensors,” IEEE Trans. Electron. Devices 40, 903–909 (1993).
[Crossref]

J. Microelectromech. Syst. (1)

T. H. Stievater, W. S. Rabinovich, H. S. Newman, J. L. Ebel, R. Mahon, D. J. McGee, and P. G. Goetz, “Microcavity Interferometry for MEMS Device Characterization,” J. Microelectromech. Syst. 12, 109–116 (2003).
[Crossref]

J. Micromech. Microeng. (1)

T. Veijola, “Compact models for squeezed-film dampers with inertial and rarefied gas effects,” J. Micromech. Microeng. 14, 1109–1118 (2004).
[Crossref]

J. Vac. Sci. Technol. B. (1)

N. Abedinov, C. Popov, Z. Yordanov, T. Ivanov, T. Gotszalk, P. Grabiec, W. Kulisch, I.W. Rangelow, D. Filenko, and Y. Shirshov, “Chemical recognition based on micromachined silicon cantilever array,” J. Vac. Sci. Technol. B. 21(6), 2931–2936 (2003).
[Crossref]

Opt. Eng. (1)

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42, 1611–1617 (2003).
[Crossref]

Rev. Sci. Instrum. (1)

E. A. Wachter, T. Thundat, P. I. Oden, R. J. Warmack, P. G. Datskos, and S. L. Sharp, “Remote optical detection using microcantilevers,” Rev. Sci. Instrum. 67(10), 3434–3439 (1996).
[Crossref]

Science (1)

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

Other (3)

T. H. Stievater, W. S. Rabinovich, R. Mahon, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. Bass, R. A. McGill, and J. Stepnowski, “Remote All-Optical Detection of Chemical Vapors using Micromechanical Resonators,” in Nanoelectronic Devices for Defense and Security (NANO-DDS) Conference (DOD-DTRA, Arlington, VA, USA, 2007).

D. W. Carr and H. G. Craighead, “Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography,” vol.  15, pp. 2760–2763 (AVS, 1997).

“Linear and hyperbranched hydrogen bond acidic poly(silylene-methylene)s for chemical sensor applications,” in ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, vol. 225 of 316-PMSE Part 2 (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Photonic microharp sensors. (a): Fiber-optic interrogation of a coated microharp via microcavity interferometry. (b): A photograph of a microharp following polymer deposition. The coatings on the microbridges are (in order from top to bottom): uncoated, HC, PEI, and CS (see text). (c): A scanning electron micrograph image of a gold microharp prior to polymer deposition.

Fig. 2.
Fig. 2.

Experimental set-up. WDM: Wavelength division multiplexer. FOC: Fiber optic circulator. LP: Long-pass. PD: Photodetector. Light from the read-out laser (at 1.5 µm) and the actuation laser (at 1.3 µm) are combined into a single single-mode optical fiber and focused onto the microharp. Reflected read-out light is recollected into the optical fiber and measured by a network analyzer for frequency-domain analysis. The analyte vapor flow is regulated with a mass-flow controller and solenoid valve for calibrated delivery to the sample.

Fig. 3.
Fig. 3.

Mechanical microharp spectrum. The mechanical resonance spectrum is obtained by the network analyzer for read-out laser light reflected by the microharp. Each resonance corresponds to the fundamental flexural mode of one microbridge in the microharp. Inset: The optical reflectivity spectrum of a typical microbridge, showing the Fabry-Perot modes.

Fig. 4.
Fig. 4.

Detection of DMMP, toluene, and water vapor. The microharp is exposed to DMMP vapor in (a), toluene vapor in (b), and water vapor in (c). The lower black plot in each figure shows when the solenoid valve is open. In each figure, the red (green, blue) curve is the differential relative frequency shift of microbridge 2 (3, 4) referenced to microbridge 1(see text).

Fig. 5.
Fig. 5.

Analyte scatter plot using two-dimensional principal component analysis (PCA). The relative differential frequency response for each analyte has been reduced from three dimensions (B2-B1, B3-B1, and B4-B1) to two, to show selectivity in the microharp response. Inset: Detection of DMMP by the HC-coated microbridge at a concentration of approximately 17 ppb.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

x = Δ f f 0 t Au t polymer 2 ρ N A k B T KMP
x = Δ f f 0 2 N A k B T KMP m eff 0 w 2 w 2 L 2 L 2 s ( x , y , z ) ϕ 2 ( x ) dxdydz

Metrics