Abstract

In this paper, we describe a thermal embossing imprint method, which we name “nano-imprinting in metal” (NIM), for patterning metal films with a variety of profiles. Metal films exhibiting either perforated hole-arrays or corrugated structures with various surface morphologies can be fabricated rapidly. The SPR phenomenon allowed energy coupling to the other side of the textured metal film, causing a dramatic increase in the transmission. As a technique for readily controlling the working wavelength and transmittance, the NIM method has great potential for application in various optoelectronic devices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667 (2005).
    [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003).
    [CrossRef] [PubMed]
  3. H. W. Gao, J. Henzie, T. W. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Lett. 6, 2104 (2006).
    [CrossRef] [PubMed]
  4. N. Bonod, S. Enoch, L. Li, E. Popov, and M. Neviere, "Resonant optical transmission through thin metallic films with and without holes," Opt. Express 11, 482 (2003) http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-5-482
    [CrossRef] [PubMed]
  5. I. Avrutsky, Y. Zhao, and V. Kochergin, "Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film," Opt. Lett. 25, 595 (2005).
    [CrossRef]
  6. Z. M. Zhu, and T. G. Brown, "Nonperturbative analysis of cross coupling in corrugated metal films," J. Opt. Soc. Am. A 17, 1798 (2000).
    [CrossRef]
  7. S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, "Light emission through a corrugated metal film: The role of cross-coupled surface lasmon polaritons," Phys. Rev. B 69, 245418 (2004).
    [CrossRef]
  8. B. F. Bai, L. F. Li, and L. J. Zeng, "Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes," Opt. Lett. 30, 2360 (2005).
    [CrossRef] [PubMed]
  9. H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, "Directly patterning metal films by nanoimprint lithography," Microelectron. Eng. 83, 893 (2006).
    [CrossRef]
  10. M. T. Li, L. Chen, and S. Y. Chou, "Direct three-dimensional patterning using nanoimprint lithography," Appl. Phys. Lett. 78, 3322 (2001).
    [CrossRef]
  11. D. H. Kim, W. J. Chin, S. S. Lee, S. W. Ahn, and K. D. Lee, "Tunable polymeric Bragg grating filter using nanoimprint technique," Appl. Phys. Lett. 88, 071120 (2006).
    [CrossRef]
  12. T. Martensson, P. Carlberg, M. Borgstrom, L. Montelius, W. Seifert, and L. Samuelson, "Nanowire arrays defined by nanoimprint lithography," Nano Lett. 4, 699 (2004).
    [CrossRef]
  13. B. C. Okerberg, C. L. Soles, J. F. Douglas, H. W. Ro, A. Karim, and D. R. Hines, "Crystallization of poly(ethylene oxide) patterned by nanoimprint lithography," Macromolecules 40, 2968 (2007).
    [CrossRef]
  14. V. Reboud, N. Kehagias, M. Zelsmann, C. Schuster, M. Fink, F. Reuther, G. Gruetzner, and C. M. Sotomayor Torres, "Photoluminescence enhancement in nanoimprinted photonic crystals and coupled surface plasmons," Opt. Express 15, 7190 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7190.
    [CrossRef] [PubMed]
  15. H. Yoshihiko, U. Toshihiko, K. Tomohiro, and M. Takashi, SPIE-Int. Soc. Opt. Eng. 74, 5220 (2003).
  16. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," J. Opt. Commun. 200, 1 (2001).
    [CrossRef]
  17. H. A. Macleod, Thin Film Optical Filters, (Institute of Physics 2001).
    [CrossRef]

2007 (2)

2006 (3)

H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, "Directly patterning metal films by nanoimprint lithography," Microelectron. Eng. 83, 893 (2006).
[CrossRef]

D. H. Kim, W. J. Chin, S. S. Lee, S. W. Ahn, and K. D. Lee, "Tunable polymeric Bragg grating filter using nanoimprint technique," Appl. Phys. Lett. 88, 071120 (2006).
[CrossRef]

H. W. Gao, J. Henzie, T. W. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Lett. 6, 2104 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (2)

S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, "Light emission through a corrugated metal film: The role of cross-coupled surface lasmon polaritons," Phys. Rev. B 69, 245418 (2004).
[CrossRef]

T. Martensson, P. Carlberg, M. Borgstrom, L. Montelius, W. Seifert, and L. Samuelson, "Nanowire arrays defined by nanoimprint lithography," Nano Lett. 4, 699 (2004).
[CrossRef]

2003 (3)

H. Yoshihiko, U. Toshihiko, K. Tomohiro, and M. Takashi, SPIE-Int. Soc. Opt. Eng. 74, 5220 (2003).

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003).
[CrossRef] [PubMed]

N. Bonod, S. Enoch, L. Li, E. Popov, and M. Neviere, "Resonant optical transmission through thin metallic films with and without holes," Opt. Express 11, 482 (2003) http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-5-482
[CrossRef] [PubMed]

2001 (2)

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," J. Opt. Commun. 200, 1 (2001).
[CrossRef]

M. T. Li, L. Chen, and S. Y. Chou, "Direct three-dimensional patterning using nanoimprint lithography," Appl. Phys. Lett. 78, 3322 (2001).
[CrossRef]

2000 (1)

Ahn, S. W.

D. H. Kim, W. J. Chin, S. S. Lee, S. W. Ahn, and K. D. Lee, "Tunable polymeric Bragg grating filter using nanoimprint technique," Appl. Phys. Lett. 88, 071120 (2006).
[CrossRef]

Avrutsky, I.

Bai, B. F.

Barnes, W. L.

S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, "Light emission through a corrugated metal film: The role of cross-coupled surface lasmon polaritons," Phys. Rev. B 69, 245418 (2004).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003).
[CrossRef] [PubMed]

Bonod, N.

Borgstrom, M.

T. Martensson, P. Carlberg, M. Borgstrom, L. Montelius, W. Seifert, and L. Samuelson, "Nanowire arrays defined by nanoimprint lithography," Nano Lett. 4, 699 (2004).
[CrossRef]

Brown, T. G.

Carlberg, P.

T. Martensson, P. Carlberg, M. Borgstrom, L. Montelius, W. Seifert, and L. Samuelson, "Nanowire arrays defined by nanoimprint lithography," Nano Lett. 4, 699 (2004).
[CrossRef]

Chen, H. L.

H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, "Directly patterning metal films by nanoimprint lithography," Microelectron. Eng. 83, 893 (2006).
[CrossRef]

Chen, L.

M. T. Li, L. Chen, and S. Y. Chou, "Direct three-dimensional patterning using nanoimprint lithography," Appl. Phys. Lett. 78, 3322 (2001).
[CrossRef]

Cheng, H. C.

H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, "Directly patterning metal films by nanoimprint lithography," Microelectron. Eng. 83, 893 (2006).
[CrossRef]

Chin, W. J.

D. H. Kim, W. J. Chin, S. S. Lee, S. W. Ahn, and K. D. Lee, "Tunable polymeric Bragg grating filter using nanoimprint technique," Appl. Phys. Lett. 88, 071120 (2006).
[CrossRef]

Chou, S. Y.

M. T. Li, L. Chen, and S. Y. Chou, "Direct three-dimensional patterning using nanoimprint lithography," Appl. Phys. Lett. 78, 3322 (2001).
[CrossRef]

Chu, T. C.

H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, "Directly patterning metal films by nanoimprint lithography," Microelectron. Eng. 83, 893 (2006).
[CrossRef]

Chuang, S. Y.

H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, "Directly patterning metal films by nanoimprint lithography," Microelectron. Eng. 83, 893 (2006).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003).
[CrossRef] [PubMed]

Douglas, J. F.

B. C. Okerberg, C. L. Soles, J. F. Douglas, H. W. Ro, A. Karim, and D. R. Hines, "Crystallization of poly(ethylene oxide) patterned by nanoimprint lithography," Macromolecules 40, 2968 (2007).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667 (2005).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," J. Opt. Commun. 200, 1 (2001).
[CrossRef]

Enoch, S.

Fink, M.

Gao, H. W.

H. W. Gao, J. Henzie, T. W. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Lett. 6, 2104 (2006).
[CrossRef] [PubMed]

Garcia-Vidal, F.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," J. Opt. Commun. 200, 1 (2001).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667 (2005).
[CrossRef]

Gruetzner, G.

Henzie, J.

H. W. Gao, J. Henzie, T. W. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Lett. 6, 2104 (2006).
[CrossRef] [PubMed]

Hines, D. R.

B. C. Okerberg, C. L. Soles, J. F. Douglas, H. W. Ro, A. Karim, and D. R. Hines, "Crystallization of poly(ethylene oxide) patterned by nanoimprint lithography," Macromolecules 40, 2968 (2007).
[CrossRef]

Hooper, I. R.

S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, "Light emission through a corrugated metal film: The role of cross-coupled surface lasmon polaritons," Phys. Rev. B 69, 245418 (2004).
[CrossRef]

Karim, A.

B. C. Okerberg, C. L. Soles, J. F. Douglas, H. W. Ro, A. Karim, and D. R. Hines, "Crystallization of poly(ethylene oxide) patterned by nanoimprint lithography," Macromolecules 40, 2968 (2007).
[CrossRef]

Kehagias, N.

Kim, D. H.

D. H. Kim, W. J. Chin, S. S. Lee, S. W. Ahn, and K. D. Lee, "Tunable polymeric Bragg grating filter using nanoimprint technique," Appl. Phys. Lett. 88, 071120 (2006).
[CrossRef]

Kim, T. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," J. Opt. Commun. 200, 1 (2001).
[CrossRef]

Kochergin, V.

Krishnan, A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," J. Opt. Commun. 200, 1 (2001).
[CrossRef]

Lee, K. D.

D. H. Kim, W. J. Chin, S. S. Lee, S. W. Ahn, and K. D. Lee, "Tunable polymeric Bragg grating filter using nanoimprint technique," Appl. Phys. Lett. 88, 071120 (2006).
[CrossRef]

Lee, S. S.

D. H. Kim, W. J. Chin, S. S. Lee, S. W. Ahn, and K. D. Lee, "Tunable polymeric Bragg grating filter using nanoimprint technique," Appl. Phys. Lett. 88, 071120 (2006).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667 (2005).
[CrossRef]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," J. Opt. Commun. 200, 1 (2001).
[CrossRef]

Li, L.

Li, L. F.

Li, M. T.

M. T. Li, L. Chen, and S. Y. Chou, "Direct three-dimensional patterning using nanoimprint lithography," Appl. Phys. Lett. 78, 3322 (2001).
[CrossRef]

Lin, C. H.

H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, "Directly patterning metal films by nanoimprint lithography," Microelectron. Eng. 83, 893 (2006).
[CrossRef]

Martensson, T.

T. Martensson, P. Carlberg, M. Borgstrom, L. Montelius, W. Seifert, and L. Samuelson, "Nanowire arrays defined by nanoimprint lithography," Nano Lett. 4, 699 (2004).
[CrossRef]

Martin-Moreno, L.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," J. Opt. Commun. 200, 1 (2001).
[CrossRef]

Montelius, L.

T. Martensson, P. Carlberg, M. Borgstrom, L. Montelius, W. Seifert, and L. Samuelson, "Nanowire arrays defined by nanoimprint lithography," Nano Lett. 4, 699 (2004).
[CrossRef]

Neviere, M.

Odom, T. W.

H. W. Gao, J. Henzie, T. W. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Lett. 6, 2104 (2006).
[CrossRef] [PubMed]

Okerberg, B. C.

B. C. Okerberg, C. L. Soles, J. F. Douglas, H. W. Ro, A. Karim, and D. R. Hines, "Crystallization of poly(ethylene oxide) patterned by nanoimprint lithography," Macromolecules 40, 2968 (2007).
[CrossRef]

Pendry, J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," J. Opt. Commun. 200, 1 (2001).
[CrossRef]

Popov, E.

Reboud, V.

Reuther, F.

Ro, H. W.

B. C. Okerberg, C. L. Soles, J. F. Douglas, H. W. Ro, A. Karim, and D. R. Hines, "Crystallization of poly(ethylene oxide) patterned by nanoimprint lithography," Macromolecules 40, 2968 (2007).
[CrossRef]

Sage, I.

S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, "Light emission through a corrugated metal film: The role of cross-coupled surface lasmon polaritons," Phys. Rev. B 69, 245418 (2004).
[CrossRef]

Samuelson, L.

T. Martensson, P. Carlberg, M. Borgstrom, L. Montelius, W. Seifert, and L. Samuelson, "Nanowire arrays defined by nanoimprint lithography," Nano Lett. 4, 699 (2004).
[CrossRef]

Schuster, C.

Seifert, W.

T. Martensson, P. Carlberg, M. Borgstrom, L. Montelius, W. Seifert, and L. Samuelson, "Nanowire arrays defined by nanoimprint lithography," Nano Lett. 4, 699 (2004).
[CrossRef]

Soles, C. L.

B. C. Okerberg, C. L. Soles, J. F. Douglas, H. W. Ro, A. Karim, and D. R. Hines, "Crystallization of poly(ethylene oxide) patterned by nanoimprint lithography," Macromolecules 40, 2968 (2007).
[CrossRef]

Sotomayor Torres, C. M.

Takashi, M.

H. Yoshihiko, U. Toshihiko, K. Tomohiro, and M. Takashi, SPIE-Int. Soc. Opt. Eng. 74, 5220 (2003).

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667 (2005).
[CrossRef]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," J. Opt. Commun. 200, 1 (2001).
[CrossRef]

Tomohiro, K.

H. Yoshihiko, U. Toshihiko, K. Tomohiro, and M. Takashi, SPIE-Int. Soc. Opt. Eng. 74, 5220 (2003).

Toshihiko, U.

H. Yoshihiko, U. Toshihiko, K. Tomohiro, and M. Takashi, SPIE-Int. Soc. Opt. Eng. 74, 5220 (2003).

Wedge, S.

S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, "Light emission through a corrugated metal film: The role of cross-coupled surface lasmon polaritons," Phys. Rev. B 69, 245418 (2004).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667 (2005).
[CrossRef]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," J. Opt. Commun. 200, 1 (2001).
[CrossRef]

Yoshihiko, H.

H. Yoshihiko, U. Toshihiko, K. Tomohiro, and M. Takashi, SPIE-Int. Soc. Opt. Eng. 74, 5220 (2003).

Zelsmann, M.

Zeng, L. J.

Zhao, Y.

Zhu, Z. M.

Appl. Phys. Lett. (2)

M. T. Li, L. Chen, and S. Y. Chou, "Direct three-dimensional patterning using nanoimprint lithography," Appl. Phys. Lett. 78, 3322 (2001).
[CrossRef]

D. H. Kim, W. J. Chin, S. S. Lee, S. W. Ahn, and K. D. Lee, "Tunable polymeric Bragg grating filter using nanoimprint technique," Appl. Phys. Lett. 88, 071120 (2006).
[CrossRef]

J. Opt. Commun. (1)

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," J. Opt. Commun. 200, 1 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

Macromolecules (1)

B. C. Okerberg, C. L. Soles, J. F. Douglas, H. W. Ro, A. Karim, and D. R. Hines, "Crystallization of poly(ethylene oxide) patterned by nanoimprint lithography," Macromolecules 40, 2968 (2007).
[CrossRef]

Microelectron. Eng. (1)

H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, "Directly patterning metal films by nanoimprint lithography," Microelectron. Eng. 83, 893 (2006).
[CrossRef]

Nano Lett. (2)

H. W. Gao, J. Henzie, T. W. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Lett. 6, 2104 (2006).
[CrossRef] [PubMed]

T. Martensson, P. Carlberg, M. Borgstrom, L. Montelius, W. Seifert, and L. Samuelson, "Nanowire arrays defined by nanoimprint lithography," Nano Lett. 4, 699 (2004).
[CrossRef]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667 (2005).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (1)

S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, "Light emission through a corrugated metal film: The role of cross-coupled surface lasmon polaritons," Phys. Rev. B 69, 245418 (2004).
[CrossRef]

Soc. Opt. Eng. (1)

H. Yoshihiko, U. Toshihiko, K. Tomohiro, and M. Takashi, SPIE-Int. Soc. Opt. Eng. 74, 5220 (2003).

Other (1)

H. A. Macleod, Thin Film Optical Filters, (Institute of Physics 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic representations of the NIM and double-imprinting processes.

Fig. 2.
Fig. 2.

SEM images of (a) a grating mold, (b) an hexagonal ultra-sharp mold, (c) a corrugated gold film patterned using the NIM method, (d) hole arrays in a gold film patterned using the NIM method. (e) AFM image of a corrugated gold film that had been double-imprinted using a mold possessing a grating pattern.

Fig. 3.
Fig. 3.

(a) Transmission spectra of gold films before and after patterning with corrugated structures, with and without index-matching layers. (b) Transmission spectra of gold films possessing hole array and corrugated structures.

Fig. 4.
Fig. 4.

FDTD diagrams of (a) a flat gold film and (b) a gold film possessing a continuous corrugated structure having a period of 400 nm and a depth of 40nm (c) a depth of 90nm

Fig. 5.
Fig. 5.

The depth of surface-profile in metal films can be tuned by using different imprint pressure (a) 2MPa, (b) 7 MPa, (c) 12 MPa, (d) 16 MPa.

Fig. 6.
Fig. 6.

(a) Transmission spectra of gold films patterned with corrugated structures through the use of imprinting pressures ranging from 2 to 16 MPa. (b) Transmittance at 680 nm of corrugated structure (with SEM images of the corresponding groove depths) plotted as a function of the imprinting pressure.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k sp = k 0 sin θ ± mG x ± nG y
λ max = P i 2 + j 2 · ε m · ε d ε m + ε d

Metrics