Abstract

We report a high power tunable femtosecond soliton-based source using a simple combination of fiber-amplified pulses at 1064nm and hollow-core photonic bandgap fiber. Compression of 5.5ps input pulses, strongly chirped by self phase modulation in the amplifier, results in stable 520fs-soliton formation with 77% conversion efficiency after only 8m propagation in the hollow-core fiber. The Raman self-frequency shift of the solitons was used to provide 33nm wavelength tuneability. The transform-limited output pulses were frequency doubled using a nonlinear crystal with high conversion efficiency of 60% to demonstrate a femtosecond green laser tunable from 534nm to 548nm with 180nJ pulse energy.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts and D. A. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  2. G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. J. Roberts and B. J. Mangan, "Hollow core photonic crystal fibers for beam delivery," Opt. Express 12, 1477-1484 (2004).
    [CrossRef] [PubMed]
  3. C. J. S. de Matos and J. R. Taylor, "Chirped pulse Raman amplification with compression in air-core photonic bandgap fiber," Opt. Express 13, 2828-2834 (2005).
    [CrossRef] [PubMed]
  4. B. Ortaç, M. Plötner, T. Schreiber, J. Limpert and A. Tünnermann, "Experimental and numerical study of pulse dynamics in positive net-cavity dispersion modelocked Yb-doped fiber lasers," Opt. Express 15, 15595-15602 (2007).
    [CrossRef]
  5. D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
    [CrossRef] [PubMed]
  6. F. Luan, J. C. Knight, P. St. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams and P. J. Roberts, "Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers," Opt. Express 12, 835-840 (2004).
    [CrossRef] [PubMed]
  7. F. Gérôme, K. Cook, A. K. George, W. J. Wadsworth and J. C. Knight, "Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression," Opt. Express 15, 7126-7131 (2007).
    [CrossRef] [PubMed]
  8. G. McConnell and A. I. Ferguson, "Simultaneous stimulated Raman scattering and second harmonic generation in periodically poled lithium niobate," Opt. Express 13, 2099-2104 (2005).
    [CrossRef] [PubMed]
  9. C. J. S. de Matos, R. E. Kennedy, S. V. Popov, and J. R. Taylor, "20-kW peak power all-fiber 1.57-µm source based on compression in air-core photonic bandgap fiber, its frequency doubling, and broadband generation from 430nm to 1450nm," Opt. Lett. 30, 436-438 (2005).
    [CrossRef] [PubMed]

2007

2005

2004

2003

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

1999

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts and D. A. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Allan, D. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts and D. A. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts and D. A. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Bouwmans, G.

Campbell, S.

Cook, K.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts and D. A. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

de Matos, C. J. S.

Ferguson, A. I.

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

George, A. K.

Gérôme, F.

Humbert, G.

Kennedy, R. E.

Knight, J. C.

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Limpert, J.

Luan, F.

Mangan, B. J.

McConnell, G.

Muller, D.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Ortaç, B.

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Plötner, M.

Popov, S. V.

Reid, D. T.

Roberts, P. J.

Russell, P. St. J.

Schreiber, T.

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Taylor, J. R.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Tünnermann, A.

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Wadsworth, W. J.

Williams, D. P.

Xiao, D.

Opt. Express

Opt. Lett.

Science

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts and D. A. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a). Normalized transmission (solid curve) and GVD (circle points) versus the wavelength. Fiber cross-section used in the following experiments is shown in the inset.; (b) GVD zoom between 1064nm and 1114nm.

Fig. 2.
Fig. 2.

(a). Output pulse autocorrelation width (without deconvolution factor) as a function of output pulse energy; (b). Spectra before (dashed curve) and after (solid curve) propagation in 8m length of HC-PBGF for 320nJ laser pulse energy (220nJ×77%=170nJ-soliton).

Fig. 3.
Fig. 3.

(a). Normalized experimental output pulse width and (b) spectrum as a function of the fiber propagation for 320nJ laser pulse energy. (Linear interpolation is used for the plot)

Fig. 4.
Fig. 4.

(a). Spectra recorded at the output of 8m length of HC-PBGF : zoom on the soliton part (residual pump at 1064nm not shown). (b) Soliton shift versus the laser pulse energy. The laser pulse energy threshold (>220nJ) relating to the soliton effect is also indicated.

Fig. 5.
Fig. 5.

Experimental set-up used for the second harmonic generation.

Fig. 6.
Fig. 6.

(a). Spectra recorded at the output of the LBO crystal; (b). solitonic-source and SH radiation shift versus the laser pulse energy.

Fig. 7.
Fig. 7.

SH pulse energy (green) versus the input pulse energy (infra-red). The corresponding conversion efficiency is also mentioned.

Metrics