Abstract

A color filter based on a subwavelength patterned grating in poly silicon was proposed and realized on a quartz substrate. It was produced by utilizing the laser interference lithography technique to feature wide effective area compared to the costly e-beam lithography. An oxide layer was introduced on top of the silicon grating layer as a mask to facilitate the silicon-etching and to enhance the filtering selectivity as well. The structural parameters for the device include the grating pitch and height of 450 nm and 100 nm respectively, the silicon stripe width of 150 nm, and the oxide thickness of 200 nm. The fabricated device offered a spectral response suitable for a blue color filter, exhibiting the center wavelength of ~460 nm, the bandwidth ~90 nm and the peak transmission 40%. The positional dependence of its performance was examined to find the effective area of 3×3 mm2, where the variation in the relative transmission efficiency and in the center wavelength was less than 10% and 2 nm respectively. Finally, the influence of the angle of the incident beam upon the transfer characteristics of the device was investigated to reveal that the rate of change in the relative transmission was equivalent to about 1.5%/degree.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F.-J. Ko and H.-P. D. Shieh, "High-efficiency micro-optical color filter for liquid-crystal projection system applications," Appl. Opt. 39, 1159-1163 (2000).
    [CrossRef]
  2. Y. Cho, Y. K. Choi, and S. H. Sohn, "Optical properties of neodymium-containing polymethylmethacrylate films for the organic light emitting diode color filter," Appl. Phys. Lett.  89, 051102-1-051102-3 (2006).
    [CrossRef]
  3. P. B. Catrysse, W. Suh, S. Fan, and M. Peeters, "One-mode model for patterned metal layers inside integrated color pixels," Opt. Lett. 29, 974-976 (2004).
    [CrossRef] [PubMed]
  4. Y. Kanamori, M. Shimono, and K. Hane, "Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrate," IEEE Photon. Technol. Lett. 18, 2126-2128 (2006).
    [CrossRef]
  5. H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, "Color filter based on a subwavelength patterned metal grating," Opt. Exp. 15, 15457-15463 (2007).
    [CrossRef]
  6. S. Y. Chou, P. R. Krauss and P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Appl. Phys. Lett. 67, 3114-3116 (1995).
    [CrossRef]
  7. Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography," Appl. Phys. Lett. 77, 927-929 (2000).
    [CrossRef]
  8. K. Seshan, Handbook of Thin Film Deposition Processes and Technologies (Noyes Publications, New York, USA, 2002), pp. 11-43.
  9. S. Tibuleac and R. Magnusson, "Reflection and transmission guided-mode resonance filters," J. Opt. Soc. Am. A 14, 1617-1626 (1997).
    [CrossRef]
  10. Y. Ding and R. Magnusson, "Doubly resonant single-layer bandpass optical filters," Opt. Lett. 29, 1135-1137 (2004).
    [CrossRef] [PubMed]
  11. R. Magnusson and S. S. Wang, "Transmission bandpass guided-mode resonance filters," Appl. Opt. 34, 8106-8109 (1995).
    [CrossRef] [PubMed]
  12. S. Tibuleac and R. Magnusson, "Narrow-linewidth bandpass filters with diffractive thin-film layers," Opt. Lett. 26, 584-586 (2001).
    [CrossRef]
  13. E. D. Palik, Handbook of Optical Constants of Solids III (Academic Press, San Diego, USA, 1998), pp. 519-536.
  14. L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, "Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
    [CrossRef]
  15. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874-1877 (2005).
    [CrossRef]
  16. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, S. H. Lee, J. D. Park, and P. W. Yoon, "Fabrication of subwavelength aluminum wire grating using nanoimprint lithography and reactive ion etching," Microelecton. Eng. 78-79, 314-318 (2005).
    [CrossRef]

2007

H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, "Color filter based on a subwavelength patterned metal grating," Opt. Exp. 15, 15457-15463 (2007).
[CrossRef]

2006

Y. Kanamori, M. Shimono, and K. Hane, "Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrate," IEEE Photon. Technol. Lett. 18, 2126-2128 (2006).
[CrossRef]

2005

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874-1877 (2005).
[CrossRef]

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, S. H. Lee, J. D. Park, and P. W. Yoon, "Fabrication of subwavelength aluminum wire grating using nanoimprint lithography and reactive ion etching," Microelecton. Eng. 78-79, 314-318 (2005).
[CrossRef]

2004

2001

2000

F.-J. Ko and H.-P. D. Shieh, "High-efficiency micro-optical color filter for liquid-crystal projection system applications," Appl. Opt. 39, 1159-1163 (2000).
[CrossRef]

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography," Appl. Phys. Lett. 77, 927-929 (2000).
[CrossRef]

L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, "Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

1997

1995

R. Magnusson and S. S. Wang, "Transmission bandpass guided-mode resonance filters," Appl. Opt. 34, 8106-8109 (1995).
[CrossRef] [PubMed]

S. Y. Chou, P. R. Krauss and P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Appl. Phys. Lett. 67, 3114-3116 (1995).
[CrossRef]

Agarwal, A.

L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, "Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

Ahn, S. W.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, S. H. Lee, J. D. Park, and P. W. Yoon, "Fabrication of subwavelength aluminum wire grating using nanoimprint lithography and reactive ion etching," Microelecton. Eng. 78-79, 314-318 (2005).
[CrossRef]

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874-1877 (2005).
[CrossRef]

Catrysse, P. B.

Chou, S. Y.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography," Appl. Phys. Lett. 77, 927-929 (2000).
[CrossRef]

S. Y. Chou, P. R. Krauss and P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Appl. Phys. Lett. 67, 3114-3116 (1995).
[CrossRef]

Deshpande, P.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography," Appl. Phys. Lett. 77, 927-929 (2000).
[CrossRef]

Ding, Y.

Duan, X.

L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, "Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

Fan, S.

Hane, K.

Y. Kanamori, M. Shimono, and K. Hane, "Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrate," IEEE Photon. Technol. Lett. 18, 2126-2128 (2006).
[CrossRef]

Kanamori, Y.

Y. Kanamori, M. Shimono, and K. Hane, "Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrate," IEEE Photon. Technol. Lett. 18, 2126-2128 (2006).
[CrossRef]

Kim, J. S.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874-1877 (2005).
[CrossRef]

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, S. H. Lee, J. D. Park, and P. W. Yoon, "Fabrication of subwavelength aluminum wire grating using nanoimprint lithography and reactive ion etching," Microelecton. Eng. 78-79, 314-318 (2005).
[CrossRef]

Kim, S. H.

H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, "Color filter based on a subwavelength patterned metal grating," Opt. Exp. 15, 15457-15463 (2007).
[CrossRef]

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, S. H. Lee, J. D. Park, and P. W. Yoon, "Fabrication of subwavelength aluminum wire grating using nanoimprint lithography and reactive ion etching," Microelecton. Eng. 78-79, 314-318 (2005).
[CrossRef]

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874-1877 (2005).
[CrossRef]

Kimerling, L.

L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, "Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

Ko, F.-J.

Krauss, P. R.

S. Y. Chou, P. R. Krauss and P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Appl. Phys. Lett. 67, 3114-3116 (1995).
[CrossRef]

Lee, H. S.

H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, "Color filter based on a subwavelength patterned metal grating," Opt. Exp. 15, 15457-15463 (2007).
[CrossRef]

Lee, K.

L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, "Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

Lee, K. D.

H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, "Color filter based on a subwavelength patterned metal grating," Opt. Exp. 15, 15457-15463 (2007).
[CrossRef]

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, S. H. Lee, J. D. Park, and P. W. Yoon, "Fabrication of subwavelength aluminum wire grating using nanoimprint lithography and reactive ion etching," Microelecton. Eng. 78-79, 314-318 (2005).
[CrossRef]

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874-1877 (2005).
[CrossRef]

Lee, S. H.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874-1877 (2005).
[CrossRef]

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, S. H. Lee, J. D. Park, and P. W. Yoon, "Fabrication of subwavelength aluminum wire grating using nanoimprint lithography and reactive ion etching," Microelecton. Eng. 78-79, 314-318 (2005).
[CrossRef]

Lee, S. S.

H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, "Color filter based on a subwavelength patterned metal grating," Opt. Exp. 15, 15457-15463 (2007).
[CrossRef]

Liao, L.

L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, "Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

Lim, D.

L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, "Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

Magnusson, R.

Park, J. D.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874-1877 (2005).
[CrossRef]

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, S. H. Lee, J. D. Park, and P. W. Yoon, "Fabrication of subwavelength aluminum wire grating using nanoimprint lithography and reactive ion etching," Microelecton. Eng. 78-79, 314-318 (2005).
[CrossRef]

Peeters, M.

Renstrom, P. J.

S. Y. Chou, P. R. Krauss and P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Appl. Phys. Lett. 67, 3114-3116 (1995).
[CrossRef]

Shieh, H.-P. D.

Shimono, M.

Y. Kanamori, M. Shimono, and K. Hane, "Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrate," IEEE Photon. Technol. Lett. 18, 2126-2128 (2006).
[CrossRef]

Suh, W.

Tibuleac, S.

Wang, J.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography," Appl. Phys. Lett. 77, 927-929 (2000).
[CrossRef]

Wang, S. S.

Wu, W.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography," Appl. Phys. Lett. 77, 927-929 (2000).
[CrossRef]

Yoon, P. W.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874-1877 (2005).
[CrossRef]

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, S. H. Lee, J. D. Park, and P. W. Yoon, "Fabrication of subwavelength aluminum wire grating using nanoimprint lithography and reactive ion etching," Microelecton. Eng. 78-79, 314-318 (2005).
[CrossRef]

Yoon, Y. T.

H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, "Color filter based on a subwavelength patterned metal grating," Opt. Exp. 15, 15457-15463 (2007).
[CrossRef]

Yu, Z.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography," Appl. Phys. Lett. 77, 927-929 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. Y. Chou, P. R. Krauss and P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Appl. Phys. Lett. 67, 3114-3116 (1995).
[CrossRef]

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography," Appl. Phys. Lett. 77, 927-929 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Kanamori, M. Shimono, and K. Hane, "Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrate," IEEE Photon. Technol. Lett. 18, 2126-2128 (2006).
[CrossRef]

J. Electron. Mater.

L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, "Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

J. Opt. Soc. Am. A

Microelecton. Eng.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, S. H. Lee, J. D. Park, and P. W. Yoon, "Fabrication of subwavelength aluminum wire grating using nanoimprint lithography and reactive ion etching," Microelecton. Eng. 78-79, 314-318 (2005).
[CrossRef]

Nanotechnology

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874-1877 (2005).
[CrossRef]

Opt. Exp.

H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, "Color filter based on a subwavelength patterned metal grating," Opt. Exp. 15, 15457-15463 (2007).
[CrossRef]

Opt. Lett.

Other

K. Seshan, Handbook of Thin Film Deposition Processes and Technologies (Noyes Publications, New York, USA, 2002), pp. 11-43.

Y. Cho, Y. K. Choi, and S. H. Sohn, "Optical properties of neodymium-containing polymethylmethacrylate films for the organic light emitting diode color filter," Appl. Phys. Lett.  89, 051102-1-051102-3 (2006).
[CrossRef]

E. D. Palik, Handbook of Optical Constants of Solids III (Academic Press, San Diego, USA, 1998), pp. 519-536.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Proposed color filter using a subwavelength patterned grating in poly silicon (a) Schematic configuration (b) Cross-section view.

Fig. 2.
Fig. 2.

Theoretical transfer characteristics of the filter with and without the oxide layer.

Fig. 3.
Fig. 3.

Fabrication procedure for the proposed device.

Fig. 4.
Fig. 4.

Scanning electron micrograph of the fabricated color filter.

Fig. 5.
Fig. 5.

Measured spectral response of the device and the captured image for input white light.

Fig. 6.
Fig. 6.

Experimental and theoretical dependence of the relative transmission of the filter upon the angle of the incident beam.

Fig. 7.
Fig. 7.

Positional dependence of the relative transmission and the center wavelength of the filter within its effective area.

Metrics