Abstract

The inversion of ferroelectric domains in lithium niobate by a scanning focused ultra-violet laser beam (λ=244nm) is demonstrated. The resulting domain patterns are interrogated using piezoresponse force microscopy and by chemical etching in hydrofluoric acid. Direct ultra-violet laser poling was observed in un-doped congruent, iron doped congruent and titanium in-diffused congruent lithium niobate single crystals. A model is proposed to explain the mechanism of domain inversion.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Weis and T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure," Appl. Phys. A 37, 191 - 203 (1985).
    [CrossRef]
  2. A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, "First-order quasi-phase-matched blue light generation in surface-poled Ti : indiffused lithium niobate waveguides," Appl. Phys. Lett. 84, 4430 - 4432 (2004).
    [CrossRef]
  3. F. S. Chen andW.W. Benson, "A lithium niobate light modulator for fiber optical communications," Proceedings of the IEEE 62(1), 133 - 134 (1974).
    [CrossRef]
  4. C. L. Sones, S. Mailis, V. Apostolopoulos, I. E. Barry, C. Gawith, P. G. R. Smith, and R.W. Eason, "Fabrication of piezoelectric micro-cantilevers in domain-engineered LiNbO3 single crystals," J. Micromech. Microeng. 12(1), 53 - 57 (2002). URL http://dx.doi.org/10.1088/0960-1317/12/1/308.
    [CrossRef]
  5. C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R.W. Eason, K. Buse, "Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals," Appl. Phys. Lett. 86, 212901 (2005).
    [CrossRef]
  6. C. E. Valdivia, C. L. Sones, S. Mailis, J. D. Mills, and R. W. Eason, "Ultrashort-pulse optically-assisted domain engineering in lithium niobate," Ferroelectrics 340, 75 - 82 (2006). URL http://dx.doi.org/10.1080/150190600888983.
    [CrossRef]
  7. C. L. Sones, C. E. Valdivia, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, and E. Soergel, "Ultraviolet laser-induced sub-micron periodic domain formation in congruent undoped lithium niobate crystals," Appl. Phys. B 80(3), 341 - 344 (2005). URL http://dx.doi.org/10.1007/s00340-005-1731-7.
    [CrossRef]
  8. C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, "Nanoscale surface domain formation on the +z face of lithium niobate by pulse d ultraviolet laser illumination," Appl. Phys. Lett. 86(2), 022906 (2005). URL http://dx.doi.org/10.1063/1.1849414.
    [CrossRef]
  9. I. T. Wellington, C. E. Valdivia, T. J. Sono, C. L. Sones, S. Mailis, and R. W. Eason, "Ordered nano-scale domains in lithium niobate single crystals via phase-mask assisted all-optical poling," Appl. Surf. Sci. 253(9), 4215 - 4219 (2007). URL http://dx.doi.org/10.1016/j.apsusc.2006.09.018.
    [CrossRef]
  10. T. Jungk, A. Hoffmann, and E. Soergel, "Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy," Appl. Phys. Lett. 89(16), 163,507 - (2006). URL http://dx.doi.org/10.1063/1.2362984.
    [CrossRef]
  11. E. Soergel, "Visualization of ferroelectric domains in bulk single crystals," Appl. Phys. B 81(6), 729 - 752 (2005). URL http://dx.doi.org/10.1007/s00340-005-1989-9.
    [CrossRef]
  12. C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, "Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations," J. Mater. Chem 12, 295 - 298 (2002).
  13. A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, "Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions," Appl. Phys. A83(3), 389 - 396 (2006). URL http://dx.doi.org/10.1007/s00339-006-3493-4.
    [CrossRef]
  14. T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
    [CrossRef]
  15. V. Y. Shur, "Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3," J. Mater. Sci. 41(1), 199 - 210 (2006). URL http://dx.doi.org/10.1007/s10853-005-6065-7
    [CrossRef]
  16. V. Y. Shur, D. K. Kuznetsov, A. I. Lobov, E. V. Nikolaeva, M. A. Dolbilov, A. N. Orlov, and V. V. Osipov, "Formation of self-similar surface nano-domain structures in lithium niobate under highly nonequilibrium conditions," Ferroelectrics 341, 85 - 93 (2006). URL http://dx.doi.org/10.1080/00150190600897075.
    [CrossRef]
  17. M. E. Lines and A. M. Glass, Principles and Application of Ferroelectrics and Related Materials (Clarenon Press, 1977).
  18. A. M. Mamedov, "Optical properties (VUV region) of LiNbO3," Opt. Spectrosc. 56(6), 645 - 9 (1984).
  19. K. Buse, "Light-induced charge transport processes in photorefractive crystals. I. Models and experimental methods," Appl. Phys. B 64(3), 273 - 291 (1997). URL http://dx.doi.org/10.1007/s003400050175.
    [CrossRef]
  20. E. M. Bourim, C. W. Moon, S. W. Lee, and I. K. Yoo, "Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals," Physica B 383(2), 171 - 182 (2006). URL http://dx.doi.org/10.1016/j.physb.2006.02.034.
    [CrossRef]
  21. G. I. Rozenman, "Photoinduced exoemission from lithium niobate," Sov. Phys. Solid State 30(8), 1340 - 1342 (1988).
  22. S. Kim, V. Gopalan, and A. Gruverman, "Coercive fields in ferroelectrics: A case study in lithium niobate and lithium tantalate," Appl. Phys. Lett. 80(15), 2740 - 2742 (2002). URL http://dx.doi.org/10.1063/1.1470247.
    [CrossRef]
  23. A. N. Morozovska, "Theoretical description of coercive field decrease in ferroelectric-semiconductors with charged defects," Ferroelectrics 317, 37 - 42 (2005).
    [CrossRef]
  24. N. Uchida, "Optical waveguide loaded with high refractive-index strip film," Appl. Opt. 15, 179 - 182 (1976).
    [CrossRef] [PubMed]

2006 (1)

T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
[CrossRef]

2005 (2)

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R.W. Eason, K. Buse, "Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals," Appl. Phys. Lett. 86, 212901 (2005).
[CrossRef]

A. N. Morozovska, "Theoretical description of coercive field decrease in ferroelectric-semiconductors with charged defects," Ferroelectrics 317, 37 - 42 (2005).
[CrossRef]

2004 (1)

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, "First-order quasi-phase-matched blue light generation in surface-poled Ti : indiffused lithium niobate waveguides," Appl. Phys. Lett. 84, 4430 - 4432 (2004).
[CrossRef]

2002 (1)

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, "Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations," J. Mater. Chem 12, 295 - 298 (2002).

1988 (1)

G. I. Rozenman, "Photoinduced exoemission from lithium niobate," Sov. Phys. Solid State 30(8), 1340 - 1342 (1988).

1985 (1)

R. S. Weis and T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure," Appl. Phys. A 37, 191 - 203 (1985).
[CrossRef]

1984 (1)

A. M. Mamedov, "Optical properties (VUV region) of LiNbO3," Opt. Spectrosc. 56(6), 645 - 9 (1984).

1976 (1)

1974 (1)

F. S. Chen andW.W. Benson, "A lithium niobate light modulator for fiber optical communications," Proceedings of the IEEE 62(1), 133 - 134 (1974).
[CrossRef]

Benson, W.W.

F. S. Chen andW.W. Benson, "A lithium niobate light modulator for fiber optical communications," Proceedings of the IEEE 62(1), 133 - 134 (1974).
[CrossRef]

Brocklesby, W. S.

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, "Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations," J. Mater. Chem 12, 295 - 298 (2002).

Busacca, A. C.

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, "First-order quasi-phase-matched blue light generation in surface-poled Ti : indiffused lithium niobate waveguides," Appl. Phys. Lett. 84, 4430 - 4432 (2004).
[CrossRef]

Buse, K.

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R.W. Eason, K. Buse, "Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals," Appl. Phys. Lett. 86, 212901 (2005).
[CrossRef]

Chen, F. S.

F. S. Chen andW.W. Benson, "A lithium niobate light modulator for fiber optical communications," Proceedings of the IEEE 62(1), 133 - 134 (1974).
[CrossRef]

Danos, L.

T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
[CrossRef]

Eason, R. W.

T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
[CrossRef]

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, "First-order quasi-phase-matched blue light generation in surface-poled Ti : indiffused lithium niobate waveguides," Appl. Phys. Lett. 84, 4430 - 4432 (2004).
[CrossRef]

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, "Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations," J. Mater. Chem 12, 295 - 298 (2002).

Eason, R.W.

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R.W. Eason, K. Buse, "Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals," Appl. Phys. Lett. 86, 212901 (2005).
[CrossRef]

Frey, J. G.

T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
[CrossRef]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure," Appl. Phys. A 37, 191 - 203 (1985).
[CrossRef]

Mailis, S.

T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
[CrossRef]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R.W. Eason, K. Buse, "Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals," Appl. Phys. Lett. 86, 212901 (2005).
[CrossRef]

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, "First-order quasi-phase-matched blue light generation in surface-poled Ti : indiffused lithium niobate waveguides," Appl. Phys. Lett. 84, 4430 - 4432 (2004).
[CrossRef]

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, "Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations," J. Mater. Chem 12, 295 - 298 (2002).

Mamedov, A. M.

A. M. Mamedov, "Optical properties (VUV region) of LiNbO3," Opt. Spectrosc. 56(6), 645 - 9 (1984).

Morozovska, A. N.

A. N. Morozovska, "Theoretical description of coercive field decrease in ferroelectric-semiconductors with charged defects," Ferroelectrics 317, 37 - 42 (2005).
[CrossRef]

Owen, J. R.

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, "Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations," J. Mater. Chem 12, 295 - 298 (2002).

Rozenman, G. I.

G. I. Rozenman, "Photoinduced exoemission from lithium niobate," Sov. Phys. Solid State 30(8), 1340 - 1342 (1988).

Scott, J. G.

T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
[CrossRef]

Sones, C. L.

T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
[CrossRef]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R.W. Eason, K. Buse, "Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals," Appl. Phys. Lett. 86, 212901 (2005).
[CrossRef]

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, "First-order quasi-phase-matched blue light generation in surface-poled Ti : indiffused lithium niobate waveguides," Appl. Phys. Lett. 84, 4430 - 4432 (2004).
[CrossRef]

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, "Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations," J. Mater. Chem 12, 295 - 298 (2002).

Sono, T. J.

T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
[CrossRef]

Uchida, N.

Valdivia, C. E.

T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
[CrossRef]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R.W. Eason, K. Buse, "Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals," Appl. Phys. Lett. 86, 212901 (2005).
[CrossRef]

Weis, R. S.

R. S. Weis and T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure," Appl. Phys. A 37, 191 - 203 (1985).
[CrossRef]

Wengler, M. C.

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R.W. Eason, K. Buse, "Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals," Appl. Phys. Lett. 86, 212901 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

R. S. Weis and T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure," Appl. Phys. A 37, 191 - 203 (1985).
[CrossRef]

Appl. Phys. Lett. (2)

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, "First-order quasi-phase-matched blue light generation in surface-poled Ti : indiffused lithium niobate waveguides," Appl. Phys. Lett. 84, 4430 - 4432 (2004).
[CrossRef]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R.W. Eason, K. Buse, "Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals," Appl. Phys. Lett. 86, 212901 (2005).
[CrossRef]

Ferroelectrics (1)

A. N. Morozovska, "Theoretical description of coercive field decrease in ferroelectric-semiconductors with charged defects," Ferroelectrics 317, 37 - 42 (2005).
[CrossRef]

J. Mater. Chem (1)

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, "Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations," J. Mater. Chem 12, 295 - 298 (2002).

Opt. Spectrosc. (1)

A. M. Mamedov, "Optical properties (VUV region) of LiNbO3," Opt. Spectrosc. 56(6), 645 - 9 (1984).

Phys. Rev. B (1)

T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
[CrossRef]

Proceedings of the IEEE (1)

F. S. Chen andW.W. Benson, "A lithium niobate light modulator for fiber optical communications," Proceedings of the IEEE 62(1), 133 - 134 (1974).
[CrossRef]

Sov. Phys. Solid State (1)

G. I. Rozenman, "Photoinduced exoemission from lithium niobate," Sov. Phys. Solid State 30(8), 1340 - 1342 (1988).

Other (14)

S. Kim, V. Gopalan, and A. Gruverman, "Coercive fields in ferroelectrics: A case study in lithium niobate and lithium tantalate," Appl. Phys. Lett. 80(15), 2740 - 2742 (2002). URL http://dx.doi.org/10.1063/1.1470247.
[CrossRef]

C. L. Sones, S. Mailis, V. Apostolopoulos, I. E. Barry, C. Gawith, P. G. R. Smith, and R.W. Eason, "Fabrication of piezoelectric micro-cantilevers in domain-engineered LiNbO3 single crystals," J. Micromech. Microeng. 12(1), 53 - 57 (2002). URL http://dx.doi.org/10.1088/0960-1317/12/1/308.
[CrossRef]

C. E. Valdivia, C. L. Sones, S. Mailis, J. D. Mills, and R. W. Eason, "Ultrashort-pulse optically-assisted domain engineering in lithium niobate," Ferroelectrics 340, 75 - 82 (2006). URL http://dx.doi.org/10.1080/150190600888983.
[CrossRef]

C. L. Sones, C. E. Valdivia, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, and E. Soergel, "Ultraviolet laser-induced sub-micron periodic domain formation in congruent undoped lithium niobate crystals," Appl. Phys. B 80(3), 341 - 344 (2005). URL http://dx.doi.org/10.1007/s00340-005-1731-7.
[CrossRef]

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, "Nanoscale surface domain formation on the +z face of lithium niobate by pulse d ultraviolet laser illumination," Appl. Phys. Lett. 86(2), 022906 (2005). URL http://dx.doi.org/10.1063/1.1849414.
[CrossRef]

I. T. Wellington, C. E. Valdivia, T. J. Sono, C. L. Sones, S. Mailis, and R. W. Eason, "Ordered nano-scale domains in lithium niobate single crystals via phase-mask assisted all-optical poling," Appl. Surf. Sci. 253(9), 4215 - 4219 (2007). URL http://dx.doi.org/10.1016/j.apsusc.2006.09.018.
[CrossRef]

T. Jungk, A. Hoffmann, and E. Soergel, "Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy," Appl. Phys. Lett. 89(16), 163,507 - (2006). URL http://dx.doi.org/10.1063/1.2362984.
[CrossRef]

E. Soergel, "Visualization of ferroelectric domains in bulk single crystals," Appl. Phys. B 81(6), 729 - 752 (2005). URL http://dx.doi.org/10.1007/s00340-005-1989-9.
[CrossRef]

V. Y. Shur, "Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3," J. Mater. Sci. 41(1), 199 - 210 (2006). URL http://dx.doi.org/10.1007/s10853-005-6065-7
[CrossRef]

V. Y. Shur, D. K. Kuznetsov, A. I. Lobov, E. V. Nikolaeva, M. A. Dolbilov, A. N. Orlov, and V. V. Osipov, "Formation of self-similar surface nano-domain structures in lithium niobate under highly nonequilibrium conditions," Ferroelectrics 341, 85 - 93 (2006). URL http://dx.doi.org/10.1080/00150190600897075.
[CrossRef]

M. E. Lines and A. M. Glass, Principles and Application of Ferroelectrics and Related Materials (Clarenon Press, 1977).

K. Buse, "Light-induced charge transport processes in photorefractive crystals. I. Models and experimental methods," Appl. Phys. B 64(3), 273 - 291 (1997). URL http://dx.doi.org/10.1007/s003400050175.
[CrossRef]

E. M. Bourim, C. W. Moon, S. W. Lee, and I. K. Yoo, "Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals," Physica B 383(2), 171 - 182 (2006). URL http://dx.doi.org/10.1016/j.physb.2006.02.034.
[CrossRef]

A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, "Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions," Appl. Phys. A83(3), 389 - 396 (2006). URL http://dx.doi.org/10.1007/s00339-006-3493-4.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Variation with power of the UV laser-induced layer on the ‒z face. Lines scanned along the crystallographic y direction. SEM images of structures revealed by HF etching for 15 minutes. (a-d) Scan speed 50 µm s-1. (e-h) Scan speed 200 µm s-1.

Fig. 2.
Fig. 2.

SEM image of the discrete features seen on the upper surface of the ‒z face in the low power regime.

Fig. 3.
Fig. 3.

Change in feature height above ‒z face with etch time for different power exposures at a scan speed of 100 µm s-1. Flat gradient shows no etch resistance. Error bars obtained as standard deviations of repeated measurements. Insert shows how the height is defined.

Fig. 4.
Fig. 4.

Variation in the width of the upper surface of the etched ridges with power and scan speed. Error bars obtained as standard deviations of repeated measurements.

Fig. 5.
Fig. 5.

SEM image of typical features on the ‒z face after high power UV exposure revealed after 1 hr etching. The x axis of the crystal runs horizontally in the figure. Sample tilted at 30° to the electron beam. The areas indicated by annotations form the upstanding ridge structure and are both in relief of the crystal surface.

Fig. 6.
Fig. 6.

SEM image of a high-power exposure after 1 hr etching viewed from directly above. The polarity of the affected layer is seen through the differential y etching indicating that the affected layer is of the opposite polarity to the surrounding crystal. Insert shows axes of the underlying crystal.

Fig. 7.
Fig. 7.

Typical behaviour of +z exposures in the high and low power regimes. Beams scanned along the crystallographic x direction.

Fig. 8.
Fig. 8.

Typical behaviour of ‒z exposures in the high power regime on titanium in-diffused LN. Beam scanned along the crystallographic y direction.

Fig. 9.
Fig. 9.

SEM images showing alignment to the x axes of features exposed by etching on the positive and negative z faces after UV exposure in the high power regime.

Fig. 10.
Fig. 10.

Topography and PFM amplitude of a scanned UV exposure over PPLN. PPLN domains run horizontally in the images and UV written lines run vertically. In the PFM image ‒z domains appear black and +z domains appear white. UV scans are seen to invert ‒z areas of PPLN.

Fig. 11.
Fig. 11.

Schematic of the proposed mechanism for domain inversion. Solid arrows represent electric field vectors. Other vectors represented by broken arrows for clarity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E c = P s ε

Metrics