Abstract

The inversion of ferroelectric domains in lithium niobate by a scanning focused ultra-violet laser beam (λ = 244nm) is demonstrated. The resulting domain patterns are interrogated using piezoresponse force microscopy and by chemical etching in hydrofluoric acid. Direct ultra-violet laser poling was observed in un-doped congruent, iron doped congruent and titanium in-diffused congruent lithium niobate single crystals. A model is proposed to explain the mechanism of domain inversion.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Weis and T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure," Appl. Phys. A 37, 191 - 203 (1985).
    [CrossRef]
  2. A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, "First-order quasi-phase-matched blue light generation in surface-poled Ti : indiffused lithium niobate waveguides," Appl. Phys. Lett. 84, 4430 - 4432 (2004).
    [CrossRef]
  3. F. S. Chen andW.W. Benson, "A lithium niobate light modulator for fiber optical communications," Proceedings of the IEEE 62(1), 133 - 134 (1974).
  4. C. L. Sones, S. Mailis, V. Apostolopoulos, I. E. Barry, C. Gawith, P. G. R. Smith, and R.W. Eason, "Fabrication of piezoelectric micro-cantilevers in domain-engineered LiNbO3 single crystals," J. Micromech. Microeng. 12(1), 53 - 57 (2002). URL http://dx.doi.org/10.1088/0960-1317/12/1/308.
  5. C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R.W. Eason, K. Buse, "Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals," Appl. Phys. Lett. 86, 212901 (2005).
    [CrossRef]
  6. C. E. Valdivia, C. L. Sones, S. Mailis, J. D. Mills, and R. W. Eason, "Ultrashort-pulse optically-assisted domain engineering in lithium niobate," Ferroelectrics 340, 75 - 82 (2006). URL http://dx.doi.org/10.1080/150190600888983.
  7. C. L. Sones, C. E. Valdivia, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, and E. Soergel, "Ultraviolet laser-induced sub-micron periodic domain formation in congruent undoped lithium niobate crystals," Appl. Phys. B 80(3), 341 - 344 (2005). URL http://dx.doi.org/10.1007/s00340-005-1731-7.
  8. C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, "Nanoscale surface domain formation on the +z face of lithium niobate by pulse d ultraviolet laser illumination," Appl. Phys. Lett. 86(2), 022906 (2005). URL http://dx.doi.org/10.1063/1.1849414.
  9. I. T. Wellington, C. E. Valdivia, T. J. Sono, C. L. Sones, S. Mailis, and R. W. Eason, "Ordered nano-scale domains in lithium niobate single crystals via phase-mask assisted all-optical poling," Appl. Surf. Sci. 253(9), 4215 - 4219 (2007). URL http://dx.doi.org/10.1016/j.apsusc.2006.09.018.
  10. T. Jungk, A. Hoffmann, and E. Soergel, "Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy," Appl. Phys. Lett. 89(16), 163,507 - (2006). URL http://dx.doi.org/10.1063/1.2362984.
  11. E. Soergel, "Visualization of ferroelectric domains in bulk single crystals," Appl. Phys. B 81(6), 729 - 752 (2005). URL http://dx.doi.org/10.1007/s00340-005-1989-9.
  12. C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, "Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations," J. Mater. Chem 12, 295 - 298 (2002).
    [CrossRef]
  13. A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, "Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions," Appl. Phys. A83(3), 389 - 396 (2006). URL http://dx.doi.org/10.1007/s00339-006-3493-4.
  14. T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
    [CrossRef]
  15. V. Y. Shur, "Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3," J. Mater. Sci. 41(1), 199 - 210 (2006). URL http://dx.doi.org/10.1007/s10853-005-6065-7
  16. V. Y. Shur, D. K. Kuznetsov, A. I. Lobov, E. V. Nikolaeva, M. A. Dolbilov, A. N. Orlov, and V. V. Osipov, "Formation of self-similar surface nano-domain structures in lithium niobate under highly nonequilibrium conditions," Ferroelectrics 341, 85 - 93 (2006). URL http://dx.doi.org/10.1080/00150190600897075.
  17. M. E. Lines and A. M. Glass, Principles and Application of Ferroelectrics and Related Materials (Clarenon Press, 1977).
  18. A. M. Mamedov, "Optical properties (VUV region) of LiNbO3," Opt. Spectrosc. 56(6), 645 - 9 (1984).
  19. K. Buse, "Light-induced charge transport processes in photorefractive crystals. I. Models and experimental methods," Appl. Phys. B 64(3), 273 - 291 (1997). URL http://dx.doi.org/10.1007/s003400050175.
  20. E. M. Bourim, C. W. Moon, S. W. Lee, and I. K. Yoo, "Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals," Physica B 383(2), 171 - 182 (2006). URL http://dx.doi.org/10.1016/j.physb.2006.02.034.
  21. G. I. Rozenman, "Photoinduced exoemission from lithium niobate," Sov. Phys. Solid State 30(8), 1340 - 1342 (1988).
  22. S. Kim, V. Gopalan, and A. Gruverman, "Coercive fields in ferroelectrics: A case study in lithium niobate and lithium tantalate," Appl. Phys. Lett. 80(15), 2740 - 2742 (2002). URL http://dx.doi.org/10.1063/1.1470247.
  23. A. N. Morozovska, "Theoretical description of coercive field decrease in ferroelectric-semiconductors with charged defects," Ferroelectrics 317, 37 - 42 (2005).
    [CrossRef]
  24. N. Uchida, "Optical waveguide loaded with high refractive-index strip film," Appl. Opt. 15, 179 - 182 (1976).

2006

T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
[CrossRef]

2005

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R.W. Eason, K. Buse, "Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals," Appl. Phys. Lett. 86, 212901 (2005).
[CrossRef]

A. N. Morozovska, "Theoretical description of coercive field decrease in ferroelectric-semiconductors with charged defects," Ferroelectrics 317, 37 - 42 (2005).
[CrossRef]

2004

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, "First-order quasi-phase-matched blue light generation in surface-poled Ti : indiffused lithium niobate waveguides," Appl. Phys. Lett. 84, 4430 - 4432 (2004).
[CrossRef]

2002

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, "Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations," J. Mater. Chem 12, 295 - 298 (2002).
[CrossRef]

1988

G. I. Rozenman, "Photoinduced exoemission from lithium niobate," Sov. Phys. Solid State 30(8), 1340 - 1342 (1988).

1985

R. S. Weis and T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure," Appl. Phys. A 37, 191 - 203 (1985).
[CrossRef]

1984

A. M. Mamedov, "Optical properties (VUV region) of LiNbO3," Opt. Spectrosc. 56(6), 645 - 9 (1984).

1976

1974

F. S. Chen andW.W. Benson, "A lithium niobate light modulator for fiber optical communications," Proceedings of the IEEE 62(1), 133 - 134 (1974).

Benson, W.W.

F. S. Chen andW.W. Benson, "A lithium niobate light modulator for fiber optical communications," Proceedings of the IEEE 62(1), 133 - 134 (1974).

Brocklesby, W. S.

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, "Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations," J. Mater. Chem 12, 295 - 298 (2002).
[CrossRef]

Busacca, A. C.

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, "First-order quasi-phase-matched blue light generation in surface-poled Ti : indiffused lithium niobate waveguides," Appl. Phys. Lett. 84, 4430 - 4432 (2004).
[CrossRef]

Buse, K.

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R.W. Eason, K. Buse, "Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals," Appl. Phys. Lett. 86, 212901 (2005).
[CrossRef]

Chen, F. S.

F. S. Chen andW.W. Benson, "A lithium niobate light modulator for fiber optical communications," Proceedings of the IEEE 62(1), 133 - 134 (1974).

Danos, L.

T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
[CrossRef]

Eason, R. W.

T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
[CrossRef]

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, "First-order quasi-phase-matched blue light generation in surface-poled Ti : indiffused lithium niobate waveguides," Appl. Phys. Lett. 84, 4430 - 4432 (2004).
[CrossRef]

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, "Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations," J. Mater. Chem 12, 295 - 298 (2002).
[CrossRef]

Eason, R.W.

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R.W. Eason, K. Buse, "Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals," Appl. Phys. Lett. 86, 212901 (2005).
[CrossRef]

Frey, J. G.

T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
[CrossRef]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure," Appl. Phys. A 37, 191 - 203 (1985).
[CrossRef]

Mailis, S.

T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
[CrossRef]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R.W. Eason, K. Buse, "Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals," Appl. Phys. Lett. 86, 212901 (2005).
[CrossRef]

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, "First-order quasi-phase-matched blue light generation in surface-poled Ti : indiffused lithium niobate waveguides," Appl. Phys. Lett. 84, 4430 - 4432 (2004).
[CrossRef]

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, "Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations," J. Mater. Chem 12, 295 - 298 (2002).
[CrossRef]

Mamedov, A. M.

A. M. Mamedov, "Optical properties (VUV region) of LiNbO3," Opt. Spectrosc. 56(6), 645 - 9 (1984).

Morozovska, A. N.

A. N. Morozovska, "Theoretical description of coercive field decrease in ferroelectric-semiconductors with charged defects," Ferroelectrics 317, 37 - 42 (2005).
[CrossRef]

Owen, J. R.

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, "Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations," J. Mater. Chem 12, 295 - 298 (2002).
[CrossRef]

Rozenman, G. I.

G. I. Rozenman, "Photoinduced exoemission from lithium niobate," Sov. Phys. Solid State 30(8), 1340 - 1342 (1988).

Scott, J. G.

T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
[CrossRef]

Sones, C. L.

T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
[CrossRef]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R.W. Eason, K. Buse, "Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals," Appl. Phys. Lett. 86, 212901 (2005).
[CrossRef]

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, "First-order quasi-phase-matched blue light generation in surface-poled Ti : indiffused lithium niobate waveguides," Appl. Phys. Lett. 84, 4430 - 4432 (2004).
[CrossRef]

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, "Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations," J. Mater. Chem 12, 295 - 298 (2002).
[CrossRef]

Sono, T. J.

T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
[CrossRef]

Uchida, N.

Valdivia, C. E.

T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
[CrossRef]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R.W. Eason, K. Buse, "Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals," Appl. Phys. Lett. 86, 212901 (2005).
[CrossRef]

Weis, R. S.

R. S. Weis and T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure," Appl. Phys. A 37, 191 - 203 (1985).
[CrossRef]

Wengler, M. C.

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R.W. Eason, K. Buse, "Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals," Appl. Phys. Lett. 86, 212901 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. A

R. S. Weis and T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure," Appl. Phys. A 37, 191 - 203 (1985).
[CrossRef]

Appl. Phys. Lett.

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, "First-order quasi-phase-matched blue light generation in surface-poled Ti : indiffused lithium niobate waveguides," Appl. Phys. Lett. 84, 4430 - 4432 (2004).
[CrossRef]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R.W. Eason, K. Buse, "Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals," Appl. Phys. Lett. 86, 212901 (2005).
[CrossRef]

Ferroelectrics

A. N. Morozovska, "Theoretical description of coercive field decrease in ferroelectric-semiconductors with charged defects," Ferroelectrics 317, 37 - 42 (2005).
[CrossRef]

J. Mater. Chem

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, "Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations," J. Mater. Chem 12, 295 - 298 (2002).
[CrossRef]

Opt. Spectrosc.

A. M. Mamedov, "Optical properties (VUV region) of LiNbO3," Opt. Spectrosc. 56(6), 645 - 9 (1984).

Phys. Rev. B

T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL.
[CrossRef]

Proceedings of the IEEE

F. S. Chen andW.W. Benson, "A lithium niobate light modulator for fiber optical communications," Proceedings of the IEEE 62(1), 133 - 134 (1974).

Sov. Phys. Solid State

G. I. Rozenman, "Photoinduced exoemission from lithium niobate," Sov. Phys. Solid State 30(8), 1340 - 1342 (1988).

Other

S. Kim, V. Gopalan, and A. Gruverman, "Coercive fields in ferroelectrics: A case study in lithium niobate and lithium tantalate," Appl. Phys. Lett. 80(15), 2740 - 2742 (2002). URL http://dx.doi.org/10.1063/1.1470247.

C. L. Sones, S. Mailis, V. Apostolopoulos, I. E. Barry, C. Gawith, P. G. R. Smith, and R.W. Eason, "Fabrication of piezoelectric micro-cantilevers in domain-engineered LiNbO3 single crystals," J. Micromech. Microeng. 12(1), 53 - 57 (2002). URL http://dx.doi.org/10.1088/0960-1317/12/1/308.

C. E. Valdivia, C. L. Sones, S. Mailis, J. D. Mills, and R. W. Eason, "Ultrashort-pulse optically-assisted domain engineering in lithium niobate," Ferroelectrics 340, 75 - 82 (2006). URL http://dx.doi.org/10.1080/150190600888983.

C. L. Sones, C. E. Valdivia, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, and E. Soergel, "Ultraviolet laser-induced sub-micron periodic domain formation in congruent undoped lithium niobate crystals," Appl. Phys. B 80(3), 341 - 344 (2005). URL http://dx.doi.org/10.1007/s00340-005-1731-7.

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, "Nanoscale surface domain formation on the +z face of lithium niobate by pulse d ultraviolet laser illumination," Appl. Phys. Lett. 86(2), 022906 (2005). URL http://dx.doi.org/10.1063/1.1849414.

I. T. Wellington, C. E. Valdivia, T. J. Sono, C. L. Sones, S. Mailis, and R. W. Eason, "Ordered nano-scale domains in lithium niobate single crystals via phase-mask assisted all-optical poling," Appl. Surf. Sci. 253(9), 4215 - 4219 (2007). URL http://dx.doi.org/10.1016/j.apsusc.2006.09.018.

T. Jungk, A. Hoffmann, and E. Soergel, "Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy," Appl. Phys. Lett. 89(16), 163,507 - (2006). URL http://dx.doi.org/10.1063/1.2362984.

E. Soergel, "Visualization of ferroelectric domains in bulk single crystals," Appl. Phys. B 81(6), 729 - 752 (2005). URL http://dx.doi.org/10.1007/s00340-005-1989-9.

V. Y. Shur, "Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3," J. Mater. Sci. 41(1), 199 - 210 (2006). URL http://dx.doi.org/10.1007/s10853-005-6065-7

V. Y. Shur, D. K. Kuznetsov, A. I. Lobov, E. V. Nikolaeva, M. A. Dolbilov, A. N. Orlov, and V. V. Osipov, "Formation of self-similar surface nano-domain structures in lithium niobate under highly nonequilibrium conditions," Ferroelectrics 341, 85 - 93 (2006). URL http://dx.doi.org/10.1080/00150190600897075.

M. E. Lines and A. M. Glass, Principles and Application of Ferroelectrics and Related Materials (Clarenon Press, 1977).

K. Buse, "Light-induced charge transport processes in photorefractive crystals. I. Models and experimental methods," Appl. Phys. B 64(3), 273 - 291 (1997). URL http://dx.doi.org/10.1007/s003400050175.

E. M. Bourim, C. W. Moon, S. W. Lee, and I. K. Yoo, "Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals," Physica B 383(2), 171 - 182 (2006). URL http://dx.doi.org/10.1016/j.physb.2006.02.034.

A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, "Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions," Appl. Phys. A83(3), 389 - 396 (2006). URL http://dx.doi.org/10.1007/s00339-006-3493-4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics