Abstract

We report a 2R optical regenerator based on the Self-Phase Modulation and offset filtering technique in a bi-directional architecture for the simultaneous processing of two optical channels at 10 Gb/s within a single highly nonlinear fiber. Whereas excellent mitigation of the interchannel nonlinear crosstalk is experimentally demonstrated, we identify Rayleigh backscattering as the major source of crosstalk and show how it is related to the regenerator parameters and operational settings. Finally, we demonstrate that this crosstalk does not introduce any significant additional penalties as compared to single channel operation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical regeneration at 40 Gb/s and beyond," J. Lightwave Technol. 21, 2779-2790 (2003).
    [CrossRef]
  2. G. Raybon, Y. Su, J. Leuthold, R. Essiambre, T.-H. Her, C. Joergensen, P. Steinvurzel, K. Dreyer, and K. Feder, "40 Gb/s pseudo linear transmission over one million kilometers," in Proc. Optical Fiber Communications (OFC'02) (Anaheim CA, 2002), p. 42.
  3. S. Wanatabe, F. Futami, R. Okabe, Y. Takita, S. Ferber, R. Ludwig, C. Schubert, C. Schmidt, and H. G. Weber, "160 Gbit/s optical 3R-regenerator in a fiber transmission experiment," in Optical Fiber Communications Conference (OFC 2003) (Atlanta, GA, 2003), p. PD 16.
  4. M. Daikoku, N. Yoshikane, T. Otani, and H. Tanaka, "Optical 40-Gb/s 3R regenerator with a combination of the SPM and XAM effects for all-optical networks," J. Lightwave Technol. 24, 1142-1148 (2006).
    [CrossRef]
  5. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in European Conference on Optical Communications (ECOC'98) (Madrid, Spain, 1998), p. 475.
  6. M. Matsumoto, "Efficient all-optical 2R regeneration using self-phase modulation in bidirectional fiber configuration," Opt. Express 14, 11018-11023 (2006).
    [CrossRef] [PubMed]
  7. L. Provost, F. Parmigiani, C. Finot, P. Petropoulos, and D. J. Richardson, "Self-phase modulation-based 2R optical regenerator for the simultaneous processing of two WDM channels," in CLEO/Europe-IQEC (Munich, Germany, 2007), pp. CI2-1-TUE.
  8. R. J. Essiambre, B. Mikkelsen, and G. Raybon, "Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems," Electron. Lett. 35, 1576-1578 (1999).
    [CrossRef]
  9. L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, "Design scaling rules for 2R-optical self-phase modulation-based regenerators," Opt. Express 15, 5100-5112 (2007).
    [CrossRef] [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics, 3rd Edition (Academic Press, 2001).
    [PubMed]
  11. T. Ohara, H. Takara, A. Hirano, K. Mori, and S. Kawanishi, "40-Gb/s x 4-channel all-optical multichannel limiter utilizing spectrally filtered optical solitons," Photon.Technol. Lett. 15, 763-765 (2003).
    [CrossRef]
  12. D. V. Kuksenkov, S. Li, M. Sauer, and D. A. Nolan, "Nonlinear Fibre Devices Operating on Multiple WDM Channels," in European Conference on Optical Communications (ECOC'05) (Glasgow, UK, 2005), p. Mo.3.5.1.
  13. T. I. Lakoba, and M. Vasilyev, "A new robust regime for a dispersion-managed multichannel 2R regenerator," Opt. Express 15, 10061-10074 (2007).
    [CrossRef] [PubMed]
  14. E. Brinkmeyer, "Analysis of the backscattering method for single-mode optical fibers," J. Opt. Soc. Am. 70, 1010-1012 (1980).
    [CrossRef]
  15. T. H. Wood, R. A. Linke, B. L. Kasper, and E. C. Carr, "Observation of coherent Rayleigh noise in single-source bidirectional optical fiber systems," J. Lightwave Technol. 6, 346-352 (1988).
    [CrossRef]
  16. S. Radic, and S. Chandrasekar, "Limitations in dense bidirectional transmission in absence of optical amplification," Photon. Technol. Lett. 14, 95-97 (2002).
    [CrossRef]
  17. M. O. Van Deventer, "Polarization properties of Rayleigh backscattering in single-mode fibers," J. Lightwave Technol. 11, 1895-1899 (1993).
    [CrossRef]
  18. P. Gysel, and R. K. Staubli, "Spectral properties of Rayleigh backscattered light from single-mode fibers caused by a modulated probe signal," J. Lightwave Technol. 8, 1792-1798 (1990).
    [CrossRef]
  19. P. Di Vita and U. Rossi, "Backscattering measurements in optical fibres: separation of power decay from imperfection contribution," Electron. Lett. 15, 467-469 (1979).
    [CrossRef]
  20. L. Provost, F. Parmigiani, K. Mukasa, M. Takahashi, J. Hiroishi, M. Tadakuma, P. Petropoulos, and D. J. Richardson, "Simultaneous all-optical 2R regeneration of 4x10 Gbit/s wavelength division multiplexed channels," in European Conference on Optical Communications (ECOC'07) (Berlin, Germany, 2007), p. Di 4.5.1.

2007 (2)

2006 (2)

2003 (2)

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical regeneration at 40 Gb/s and beyond," J. Lightwave Technol. 21, 2779-2790 (2003).
[CrossRef]

T. Ohara, H. Takara, A. Hirano, K. Mori, and S. Kawanishi, "40-Gb/s x 4-channel all-optical multichannel limiter utilizing spectrally filtered optical solitons," Photon.Technol. Lett. 15, 763-765 (2003).
[CrossRef]

2002 (1)

S. Radic, and S. Chandrasekar, "Limitations in dense bidirectional transmission in absence of optical amplification," Photon. Technol. Lett. 14, 95-97 (2002).
[CrossRef]

1999 (1)

R. J. Essiambre, B. Mikkelsen, and G. Raybon, "Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems," Electron. Lett. 35, 1576-1578 (1999).
[CrossRef]

1993 (1)

M. O. Van Deventer, "Polarization properties of Rayleigh backscattering in single-mode fibers," J. Lightwave Technol. 11, 1895-1899 (1993).
[CrossRef]

1990 (1)

P. Gysel, and R. K. Staubli, "Spectral properties of Rayleigh backscattered light from single-mode fibers caused by a modulated probe signal," J. Lightwave Technol. 8, 1792-1798 (1990).
[CrossRef]

1988 (1)

T. H. Wood, R. A. Linke, B. L. Kasper, and E. C. Carr, "Observation of coherent Rayleigh noise in single-source bidirectional optical fiber systems," J. Lightwave Technol. 6, 346-352 (1988).
[CrossRef]

1980 (1)

1979 (1)

P. Di Vita and U. Rossi, "Backscattering measurements in optical fibres: separation of power decay from imperfection contribution," Electron. Lett. 15, 467-469 (1979).
[CrossRef]

Electron. Lett. (2)

R. J. Essiambre, B. Mikkelsen, and G. Raybon, "Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems," Electron. Lett. 35, 1576-1578 (1999).
[CrossRef]

P. Di Vita and U. Rossi, "Backscattering measurements in optical fibres: separation of power decay from imperfection contribution," Electron. Lett. 15, 467-469 (1979).
[CrossRef]

J. Lightwave Technol. (5)

M. O. Van Deventer, "Polarization properties of Rayleigh backscattering in single-mode fibers," J. Lightwave Technol. 11, 1895-1899 (1993).
[CrossRef]

P. Gysel, and R. K. Staubli, "Spectral properties of Rayleigh backscattered light from single-mode fibers caused by a modulated probe signal," J. Lightwave Technol. 8, 1792-1798 (1990).
[CrossRef]

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical regeneration at 40 Gb/s and beyond," J. Lightwave Technol. 21, 2779-2790 (2003).
[CrossRef]

M. Daikoku, N. Yoshikane, T. Otani, and H. Tanaka, "Optical 40-Gb/s 3R regenerator with a combination of the SPM and XAM effects for all-optical networks," J. Lightwave Technol. 24, 1142-1148 (2006).
[CrossRef]

T. H. Wood, R. A. Linke, B. L. Kasper, and E. C. Carr, "Observation of coherent Rayleigh noise in single-source bidirectional optical fiber systems," J. Lightwave Technol. 6, 346-352 (1988).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (3)

Photon. Technol. Lett. (1)

S. Radic, and S. Chandrasekar, "Limitations in dense bidirectional transmission in absence of optical amplification," Photon. Technol. Lett. 14, 95-97 (2002).
[CrossRef]

Photon.Technol. Lett. (1)

T. Ohara, H. Takara, A. Hirano, K. Mori, and S. Kawanishi, "40-Gb/s x 4-channel all-optical multichannel limiter utilizing spectrally filtered optical solitons," Photon.Technol. Lett. 15, 763-765 (2003).
[CrossRef]

Other (7)

D. V. Kuksenkov, S. Li, M. Sauer, and D. A. Nolan, "Nonlinear Fibre Devices Operating on Multiple WDM Channels," in European Conference on Optical Communications (ECOC'05) (Glasgow, UK, 2005), p. Mo.3.5.1.

L. Provost, F. Parmigiani, C. Finot, P. Petropoulos, and D. J. Richardson, "Self-phase modulation-based 2R optical regenerator for the simultaneous processing of two WDM channels," in CLEO/Europe-IQEC (Munich, Germany, 2007), pp. CI2-1-TUE.

G. Raybon, Y. Su, J. Leuthold, R. Essiambre, T.-H. Her, C. Joergensen, P. Steinvurzel, K. Dreyer, and K. Feder, "40 Gb/s pseudo linear transmission over one million kilometers," in Proc. Optical Fiber Communications (OFC'02) (Anaheim CA, 2002), p. 42.

S. Wanatabe, F. Futami, R. Okabe, Y. Takita, S. Ferber, R. Ludwig, C. Schubert, C. Schmidt, and H. G. Weber, "160 Gbit/s optical 3R-regenerator in a fiber transmission experiment," in Optical Fiber Communications Conference (OFC 2003) (Atlanta, GA, 2003), p. PD 16.

P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in European Conference on Optical Communications (ECOC'98) (Madrid, Spain, 1998), p. 475.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd Edition (Academic Press, 2001).
[PubMed]

L. Provost, F. Parmigiani, K. Mukasa, M. Takahashi, J. Hiroishi, M. Tadakuma, P. Petropoulos, and D. J. Richardson, "Simultaneous all-optical 2R regeneration of 4x10 Gbit/s wavelength division multiplexed channels," in European Conference on Optical Communications (ECOC'07) (Berlin, Germany, 2007), p. Di 4.5.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic of the bi-directional regenerator. (b) Variation of the nonlinear phase selfinduced on the first pulse by SPM (green curve) and XPM (orange curve) arising from the interaction with a second counter-propagating pulse. The NL phases are plotted across the temporal window of the first pulse.

Fig. 2.
Fig. 2.

Experimental set-up used for the characterization of the backscattered signal, and the corresponding HNLF parameters.

Fig. 3.
Fig. 3.

(a) Measured backscattered spectra as a function of the input average power of the signal. (b) Measured transmitted spectra as a function of the retrieved input average power of the pulses. Consecutive spectra in (a) and (b) are offset by 5 dB for clarity and acquired with a 0.1 nm resolution bandwidth. Color dashed lines correspond to same power level for each spectrum. (c) Backscattered levels within a 0.1 nm bandwidth as a function of the input average power for various offset positions from the input central wavelength. Input average powers are given at the input port of the fiber.

Fig. 4.
Fig. 4.

(a–d) Comparison between experimental (black curves) and computed backscattered spectra (red curves) obtained from the contributions of the sole backscattering modeling (green curves) and the experimentally measured point-reflection (blue dashed curves) for four different input average powers. (a): 16.2 mW; (b): 53.3 mW; (c) 74.4 mW; and (d) 149.1 mW. Resolution bandwidth: 0.1 nm.

Fig. 5.
Fig. 5.

Experimental setup of the optical 2R optical regenerator.

Fig. 6.
Fig. 6.

(a) Power TFs for Channels 1 and 2 for different filter detunings in the presence and in the absence of the second channel. (b) Nominal input power as a function of the filter offset position for both channels. (c) Output extinction ratio as a function of the filter offset value for both channels in the presence and in the absence of the second channel for an input extinction ratio of 13 dB. The reported input powers are measured at the output of each high power amplifier.

Fig. 7.
Fig. 7.

(a) Experimental spectra measured at point A of Fig. 5 when either of Channels 1 or 2 are present or not and for operating powers P1 and P2 set for δλ1=-δλ2=2.8 nm. (0.1 nm resolution bandwidth). Gray-shaded area represents the offset filter 3 dB bandwidth used for Channel 2. (b) BER measurements of the regenerator for the two Channels (operating powers set for δλ1=-δλ2=2.8 nm). 3 dB-bandwidth of the electrical filter ~6.5 GHz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S BS ( t , λ ) = z 0 = 0 L α R ( λ , z 0 ) S R ( λ , z 0 ) S ( t 2 z 0 V g ( λ ) , λ , z 0 ) z = 0 z 0 e α ( λ ) z dz dz 0
S BS , TOTAL ( λ ) = S BS ( t , λ ) t = α R ( λ ) S R ( λ ) z 0 = 0 L S ( t 2 z 0 V g ( λ ) , λ , z 0 ) t 1 e α ( λ ) z 0 α ( λ ) dz 0

Metrics