Abstract

We present a compact 50 µm×100 µm cell for single-photon detection, based on a new circuitry monolithically integrated together with a 20 µm-diameter CMOS Single-Photon Avalanche Diode (SPAD). The detector quenching relies on a novel mechanism based on starving the avalanche current till quenching through a variable-load (VLQC, Variable- Load Quenching Circuit). Fabricated in a standard 0.35 µm CMOS technology, the topology allows a SPAD bias voltage higher than the chip supply voltage to be used. Moreover it preserves the advantages of active quenching circuits, in terms of hold-off capability (from 40 ns to 2 µs) and fast reset (≤2 ns), while maintaining the low avalanche charge (≤1.6 pC/avalanche) and extremely small dimensions of passive quenching circuits. The cell enables the development of large-dimension dense arrays of SPADs, for two-dimensional imaging at the photon counting level with photon-timing jitter better than 40 ps.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. W. Becker, A. Bergmann, G. Biscotti, K. Koenig, I. Riemann, L. Kelbauskas, C. Biskup, "High-speed FLIM data acquisition by time-correlated single-photon counting," Proc. SPIE 5323, 27-35 (2004).
    [CrossRef]
  2. G. MacBeath, "Protein microarrays and proteomics," Nat. Genet. 32Suppl., 526-532 (2002).
    [CrossRef] [PubMed]
  3. D. Bonaccini, F. Rigaut, A. Glindemann, G. Dudziak, J-M Mariotti, and F. Paresce, "Adaptive Optics for ESO VLT Interferometer," Proc. SPIE 3353, 224-232 (1998).
    [CrossRef]
  4. J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer Press, 2006).
    [CrossRef]
  5. F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, "Photon counting arrays for astrophysics," J. Mod. Opt. 54, 163-190 (2007).
    [CrossRef]
  6. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, "Avalanche photodiodes and quenching circuits for single-photon detection," Appl. Opt. 35, 1956-1963 (1996).
    [CrossRef] [PubMed]
  7. C. Niclass, M. Sergio, and E. Charbon, "A single photon avalanche diode array fabricated in 0.35μm CMOS and based on an event-driven readout for TCSPC experiments," Proc. SPIE 6372, 63720S (2006).
    [CrossRef]
  8. H. Finkelstein, M. J. Hsu, S. Zlatanovic, and S. C. Esener, "Performance trade-offs in single-photon avalanche diode miniaturization," Rev. Sci. Instrum. 78, 103103 (2007).
    [CrossRef] [PubMed]
  9. D. Mosconi, D. Stoppa, L. Pancheri, L. Gonzo, and A. Simoni, "CMOS Single-Photon Avalanche Diode Array for Time-Resolved Fluorescence Detection," in Proceedings of 32nd European Solid-State Circuit Conference - ESSCIRC '06 (Institute of Electrical and Electronics Engineers, New York, 2006), pp. 564-567.
  10. F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors," IEEE J. Solid-State Circuits 38, 1298-1301 (2003).
    [CrossRef]
  11. S. Tisa, A. Tosi, and F. Zappa, "Fully-integrated CMOS single photon counter," Opt. Express 15, 2873-2887 (2007).
    [CrossRef] [PubMed]
  12. A. Dalla Mora, A. Tosi, S. Tisa, and F. Zappa, "Single-Photon Avalanche Diode model for circuit simulations," IEEE Photon. Technol. Lett. 19, 1922-1924 (2007).
    [CrossRef]
  13. C. Niclass, M. Sergio, and E. Charbon, "A single photon avalanche diode array fabricated in 0.35-µm CMOS and based on an event-driven readout for TCSPC experiments," Proc. SPIE 6372, 63720S (2006).
    [CrossRef]
  14. A. C. Giudice, M. Ghioni, S. Cova, and F. Zappa, "A process and deep level evaluation tool: afterpulsing in avalanche junctions," in Proceedings of 33rd European Solid-State Device Research - ESSDERC '03 (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 347-350.
  15. A. Gallivanoni, I. Rech, D. Resnati, M. Ghioni, and S. Cova, "Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes," Opt. Express 14, 5021-5030 (2006).
    [CrossRef] [PubMed]
  16. A Gulinatti, P. Maccagnani, I. Rech, M. Ghioni, and S. Cova, "35 ps time resolution at room temperature with large area single photon avalanche diodes," IEEE Electron. Lett. 41, 272-274 (2005).
    [CrossRef]

2007 (4)

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, "Photon counting arrays for astrophysics," J. Mod. Opt. 54, 163-190 (2007).
[CrossRef]

S. Tisa, A. Tosi, and F. Zappa, "Fully-integrated CMOS single photon counter," Opt. Express 15, 2873-2887 (2007).
[CrossRef] [PubMed]

A. Dalla Mora, A. Tosi, S. Tisa, and F. Zappa, "Single-Photon Avalanche Diode model for circuit simulations," IEEE Photon. Technol. Lett. 19, 1922-1924 (2007).
[CrossRef]

H. Finkelstein, M. J. Hsu, S. Zlatanovic, and S. C. Esener, "Performance trade-offs in single-photon avalanche diode miniaturization," Rev. Sci. Instrum. 78, 103103 (2007).
[CrossRef] [PubMed]

2006 (3)

C. Niclass, M. Sergio, and E. Charbon, "A single photon avalanche diode array fabricated in 0.35μm CMOS and based on an event-driven readout for TCSPC experiments," Proc. SPIE 6372, 63720S (2006).
[CrossRef]

C. Niclass, M. Sergio, and E. Charbon, "A single photon avalanche diode array fabricated in 0.35-µm CMOS and based on an event-driven readout for TCSPC experiments," Proc. SPIE 6372, 63720S (2006).
[CrossRef]

A. Gallivanoni, I. Rech, D. Resnati, M. Ghioni, and S. Cova, "Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes," Opt. Express 14, 5021-5030 (2006).
[CrossRef] [PubMed]

2005 (1)

A Gulinatti, P. Maccagnani, I. Rech, M. Ghioni, and S. Cova, "35 ps time resolution at room temperature with large area single photon avalanche diodes," IEEE Electron. Lett. 41, 272-274 (2005).
[CrossRef]

2004 (1)

W. Becker, A. Bergmann, G. Biscotti, K. Koenig, I. Riemann, L. Kelbauskas, C. Biskup, "High-speed FLIM data acquisition by time-correlated single-photon counting," Proc. SPIE 5323, 27-35 (2004).
[CrossRef]

2003 (1)

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors," IEEE J. Solid-State Circuits 38, 1298-1301 (2003).
[CrossRef]

2002 (1)

G. MacBeath, "Protein microarrays and proteomics," Nat. Genet. 32Suppl., 526-532 (2002).
[CrossRef] [PubMed]

1998 (1)

D. Bonaccini, F. Rigaut, A. Glindemann, G. Dudziak, J-M Mariotti, and F. Paresce, "Adaptive Optics for ESO VLT Interferometer," Proc. SPIE 3353, 224-232 (1998).
[CrossRef]

1996 (1)

Appl. Opt. (1)

IEEE Electron. Lett. (1)

A Gulinatti, P. Maccagnani, I. Rech, M. Ghioni, and S. Cova, "35 ps time resolution at room temperature with large area single photon avalanche diodes," IEEE Electron. Lett. 41, 272-274 (2005).
[CrossRef]

IEEE J. Solid-State Circuits (1)

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors," IEEE J. Solid-State Circuits 38, 1298-1301 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Dalla Mora, A. Tosi, S. Tisa, and F. Zappa, "Single-Photon Avalanche Diode model for circuit simulations," IEEE Photon. Technol. Lett. 19, 1922-1924 (2007).
[CrossRef]

J. Mod. Opt. (1)

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, F. Baronti, D. Bonaccini Calia, A. Silber, G. Bonanno, and M. Belluso, "Photon counting arrays for astrophysics," J. Mod. Opt. 54, 163-190 (2007).
[CrossRef]

Nat. Genet. (1)

G. MacBeath, "Protein microarrays and proteomics," Nat. Genet. 32Suppl., 526-532 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Proc. SPIE (4)

D. Bonaccini, F. Rigaut, A. Glindemann, G. Dudziak, J-M Mariotti, and F. Paresce, "Adaptive Optics for ESO VLT Interferometer," Proc. SPIE 3353, 224-232 (1998).
[CrossRef]

W. Becker, A. Bergmann, G. Biscotti, K. Koenig, I. Riemann, L. Kelbauskas, C. Biskup, "High-speed FLIM data acquisition by time-correlated single-photon counting," Proc. SPIE 5323, 27-35 (2004).
[CrossRef]

C. Niclass, M. Sergio, and E. Charbon, "A single photon avalanche diode array fabricated in 0.35μm CMOS and based on an event-driven readout for TCSPC experiments," Proc. SPIE 6372, 63720S (2006).
[CrossRef]

C. Niclass, M. Sergio, and E. Charbon, "A single photon avalanche diode array fabricated in 0.35-µm CMOS and based on an event-driven readout for TCSPC experiments," Proc. SPIE 6372, 63720S (2006).
[CrossRef]

Rev. Sci. Instrum. (1)

H. Finkelstein, M. J. Hsu, S. Zlatanovic, and S. C. Esener, "Performance trade-offs in single-photon avalanche diode miniaturization," Rev. Sci. Instrum. 78, 103103 (2007).
[CrossRef] [PubMed]

Other (3)

D. Mosconi, D. Stoppa, L. Pancheri, L. Gonzo, and A. Simoni, "CMOS Single-Photon Avalanche Diode Array for Time-Resolved Fluorescence Detection," in Proceedings of 32nd European Solid-State Circuit Conference - ESSCIRC '06 (Institute of Electrical and Electronics Engineers, New York, 2006), pp. 564-567.

A. C. Giudice, M. Ghioni, S. Cova, and F. Zappa, "A process and deep level evaluation tool: afterpulsing in avalanche junctions," in Proceedings of 33rd European Solid-State Device Research - ESSDERC '03 (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 347-350.

J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer Press, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Simplified schematic of a mixed passive-active quenching circuit. RL is the quenching resistor, while RS is a low value sensing resistor.

Fig. 2.
Fig. 2.

Cross-section of the CMOS SPAD integrated into the cell.

Fig. 3.
Fig. 3.

Principle of the proposed quenching/reset intervention by means of a variable-resistance MOS transistor (left) and current-voltage characteristics of a SPAD (right). Light lines connecting on and off branches represent ignitions that can occur when SPAD is biased above breakdown. VEX is the excess voltage, equal to the difference between the applied reverse bias VREV and the breakdown voltage VB.

Fig. 4.
Fig. 4.

(Top) The non-linear characteristic of the transistor is able to limit avalanche current even with no intervention of the control logic, moving from few hundreds Ohm toward some hundreds kΩ. (Center) The active action of the control logic switches off the transistor and speeds up the quenching. (Bottom) Eventually the transistor actively resets the SPAD. Note VT is the threshold voltage of transistor MS while VTH is the threshold of the following sensing stage.

Fig. 5.
Fig. 5.

VLQC cell schematics. Pass-transistor MP efficiently de-couples the sensing node from the capacitive loading of MH. (CA is the parallel of CSPAD and Canode of Fig. 3).

Fig. 6.
Fig. 6.

Typical waveforms (solid lines) of the VLQC cell shown in Fig. 5 and effect (dashed lines) of an insufficient delay introduced by inverters I3 and I4 on the falling edge of node D.

Fig. 7.
Fig. 7.

When a photon hits the detector during the reset phase, the correct behavior of the cell must be guaranteed by a proper delay introduced by inverters I3 and I4 on the rising edge of node D.

Fig. 8.
Fig. 8.

Microphotograph of the VLQC cell. Note that a major part of the silicon estate is occupied by bonding pads and the output buffer, that are not necessary when the cell is merged into an array.

Fig. 9.
Fig. 9.

Dark-counting rate vs. hold-off time of the VLQC cell with the 20 µm-SPAD.

Fig. 10.
Fig. 10.

Total afterpulsing probability at different excess bias and hold-off times, for the 20 µm SPAD operated by the VLQC electronics.

Fig. 11.
Fig. 11.

Measured VLQC output and SPAD current when a second triggering happens during the reset phase of first ignition. The hold-off (Thold-off) was set to about 40 ns. Note the extremely short duration of the first standard current pulse and the extended pulse of the second one.

Fig. 12.
Fig. 12.

Detection efficiency at different excess bias for the VLQC cell. In order to avoid any artificial increase in the measured efficiency due to afterpulsing, the hold-off time was set to 600 ns.

Fig. 13.
Fig. 13.

Overall time resolution Full Width at Half Maximum and Full-Width at 1/100th of Maximum for the VLQC cell at 820 nm wavelength and at a 5 V-excess bias.

Tables (1)

Tables Icon

Table 1. Performances of 20 µm-SPAD cell, with 600 ns hold-off time.

Metrics