Abstract

A new method for the measurement of aerosol single scatter albedo (ω) at 532 nm was developed. The method employs cavity ringdown spectroscopy (CRDS) for measurement of aerosol extinction coefficient (bext) and an integrating sphere nephelometer for determination of aerosol scattering coefficient (bscat). A unique feature of this method is that the extinction and scattering measurements are conducted simultaneously, on the exact same sample volume. Limits of detection (3s) for the extinction and scattering channel were 0.61 Mm-1 and 2.7 Mm-1 respectively.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Menon, J. Hansen, L. Nazarenko, and Y. Luo, "Climate effects of black carbon aerosols in China and India," Science 297, 2250-2253 (2002).
    [CrossRef] [PubMed]
  2. S. E. Schwartz, "Uncertainty requirements in radiative forcing of climate change," J. Air Waste Manage. Assoc. 54, 1351-1359 (2004).
  3. "Climate Change 2001: The Scientific Basis," Intergovernmental Panel on Climate Change, (2001).
  4. O. Schmid, P. Artaxo, W. P. Arnott, D. Chand, L. V. Gatti, G. P. Frank, A. Hoffer, M. Schmaiter, and M. O. Andreae, "Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin: Comparison and field calibration of absorption measurement techniques," Atmos. Chem. Phys. Discuss. 5, 9355-9404 (2005).
    [CrossRef]
  5. P. J. Sheridan, W. P. Arnott, J. A. Ogren, E. Andrews, D. B. Atkinson, D. S. Covert, H. Moosmuller, A. Petzold, B. Schmid, A. W. Strawa, R. Varma, and A. Virkkula, "The Reno aerosol optics study: an evaluation of aerosol absorption measurement methods," Aerosol Sci. Technol. 39, 1-16 (2005).
    [CrossRef]
  6. W. P. Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, "Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description," Atmos. Environ. 33, 2845-2852 (1999).
    [CrossRef]
  7. D. S. Ensor and A. P. Waggoner, "Angular truncation error in the Integrating Nephelometer," Atmos. Environ. 4, 481 - 487 (1970).
    [CrossRef]
  8. R. A. Rabinoff and B. M. Herman, "Effect of aerosol size distribution on the accuracy of the integrating nephelometer," J. Appl. Meteorol. 12, 184 - 186 (1973).
    [CrossRef]
  9. H. Moosmuller and W. P. Arnott, "Angular truncation errors in integrating nephelometry," Rev. Sci. Instrum. 74, 3492-3501 (2003).
    [CrossRef]
  10. G. T. Reed and P. Howser, "The uncertainty in measurements made using the integrating nephelometer in fog," Meas. Sci. Technol. 6, 422-428 (1995).
    [CrossRef]
  11. V. Bulatov, M. Fisher, and I. Schechter, "Aerosol analysis by cavity-ring-down laser spectroscopy," Anal. Chim. Acta,  466, 1-9 (2002).
    [CrossRef]
  12. J. E. Thompson, H. Nasajpour, B. W. Smith, and J. Winefordner, "Atmospheric aerosol measurement by cavity ringdown turbidimetry." Aerosol Sci. and Technol. 37, 221-230 (2003).
    [CrossRef]
  13. J. E. Thompson, B. W. Smith, and J. Winefordner, "Monitoring atmospheric particulate matter through Cavity Ring-Down Spectroscopy," Anal. Chem. 74, 1962-1967 (2002).
    [CrossRef] [PubMed]
  14. H. Moosmuller, R. Varma, and W. Arnott, "Cavity ring-down and cavity-enhanced detection techniques for the measurement of aerosol extinction," Aerosol Sci. Technol. 39, 30-39 (2005).
    [CrossRef]
  15. J. D. Smith and D. B. Atkinson, "A portable pulsed cavity ring-down transmissometer for measurement of the optical extinction of the atmospheric aerosol," Analyst 126, 1216 (2001).
    [CrossRef] [PubMed]
  16. R. Varma, H. Moosmuller, and W. P. Arnott, "Toward an ideal integrating nephelometer," Opt. Lett. 28, 1007-1009 (2003).
    [CrossRef] [PubMed]
  17. S. Fukagawa, H. Kuze, N. Lagrosas, and N. Takeuchi, "High efficiency aerosol scatterometer that uses an integrating sphere for the calibration of multiwavelength LIDAR data," Appl. Opt. 44, 3520-3526 (2005).
    [CrossRef] [PubMed]
  18. A. W. Strawa, R. Castaneda, T. Owano, D. S. Baer, and B. A. Paldus, "The measurement of aerosol optical properties using continuous wave cavity ring-down techniques," J. Atmos. Ocean. Technol. 20, 454 - 465 (2003).
    [CrossRef]
  19. A. McFarland "Deposition 2001a."http://www1.mengr.tamu.edu/ATL/depo.html.
  20. Air Resource Specialists, Inc., "Reevaluation of HFC 134a (SUVA) Span Gas Multiplier," http://vista.cira.colostate.edu/DatawareHouse/IMPROVE/Data/OPTICAL/Nephelometer/NephReprocessing93_04_July2005.doc.
  21. L.-W. A. Chen, H. Moosmüller, W. P. Arnott, J. C. Chow, J. G. Watson, R. A. Susott, R. E. Babbitt, C. E. Wold, E. N. Lincoln, and W. M. Hao, "Emissions from Laboratory Combustion of Wildland Fuels: Emission Factors and Source Profiles," Environ. Sci. Technol. 41, 4317-4325 (2007).
    [CrossRef] [PubMed]
  22. P. R. Bevington and D. K. Robinson, Data Reduction for the Physical Sciences (McGraw-Hill, New York, 1992), pp 41-50.

2007 (1)

L.-W. A. Chen, H. Moosmüller, W. P. Arnott, J. C. Chow, J. G. Watson, R. A. Susott, R. E. Babbitt, C. E. Wold, E. N. Lincoln, and W. M. Hao, "Emissions from Laboratory Combustion of Wildland Fuels: Emission Factors and Source Profiles," Environ. Sci. Technol. 41, 4317-4325 (2007).
[CrossRef] [PubMed]

2005 (4)

O. Schmid, P. Artaxo, W. P. Arnott, D. Chand, L. V. Gatti, G. P. Frank, A. Hoffer, M. Schmaiter, and M. O. Andreae, "Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin: Comparison and field calibration of absorption measurement techniques," Atmos. Chem. Phys. Discuss. 5, 9355-9404 (2005).
[CrossRef]

P. J. Sheridan, W. P. Arnott, J. A. Ogren, E. Andrews, D. B. Atkinson, D. S. Covert, H. Moosmuller, A. Petzold, B. Schmid, A. W. Strawa, R. Varma, and A. Virkkula, "The Reno aerosol optics study: an evaluation of aerosol absorption measurement methods," Aerosol Sci. Technol. 39, 1-16 (2005).
[CrossRef]

H. Moosmuller, R. Varma, and W. Arnott, "Cavity ring-down and cavity-enhanced detection techniques for the measurement of aerosol extinction," Aerosol Sci. Technol. 39, 30-39 (2005).
[CrossRef]

S. Fukagawa, H. Kuze, N. Lagrosas, and N. Takeuchi, "High efficiency aerosol scatterometer that uses an integrating sphere for the calibration of multiwavelength LIDAR data," Appl. Opt. 44, 3520-3526 (2005).
[CrossRef] [PubMed]

2004 (1)

S. E. Schwartz, "Uncertainty requirements in radiative forcing of climate change," J. Air Waste Manage. Assoc. 54, 1351-1359 (2004).

2003 (4)

H. Moosmuller and W. P. Arnott, "Angular truncation errors in integrating nephelometry," Rev. Sci. Instrum. 74, 3492-3501 (2003).
[CrossRef]

A. W. Strawa, R. Castaneda, T. Owano, D. S. Baer, and B. A. Paldus, "The measurement of aerosol optical properties using continuous wave cavity ring-down techniques," J. Atmos. Ocean. Technol. 20, 454 - 465 (2003).
[CrossRef]

J. E. Thompson, H. Nasajpour, B. W. Smith, and J. Winefordner, "Atmospheric aerosol measurement by cavity ringdown turbidimetry." Aerosol Sci. and Technol. 37, 221-230 (2003).
[CrossRef]

R. Varma, H. Moosmuller, and W. P. Arnott, "Toward an ideal integrating nephelometer," Opt. Lett. 28, 1007-1009 (2003).
[CrossRef] [PubMed]

2002 (3)

J. E. Thompson, B. W. Smith, and J. Winefordner, "Monitoring atmospheric particulate matter through Cavity Ring-Down Spectroscopy," Anal. Chem. 74, 1962-1967 (2002).
[CrossRef] [PubMed]

V. Bulatov, M. Fisher, and I. Schechter, "Aerosol analysis by cavity-ring-down laser spectroscopy," Anal. Chim. Acta,  466, 1-9 (2002).
[CrossRef]

S. Menon, J. Hansen, L. Nazarenko, and Y. Luo, "Climate effects of black carbon aerosols in China and India," Science 297, 2250-2253 (2002).
[CrossRef] [PubMed]

2001 (1)

J. D. Smith and D. B. Atkinson, "A portable pulsed cavity ring-down transmissometer for measurement of the optical extinction of the atmospheric aerosol," Analyst 126, 1216 (2001).
[CrossRef] [PubMed]

1999 (1)

W. P. Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, "Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description," Atmos. Environ. 33, 2845-2852 (1999).
[CrossRef]

1995 (1)

G. T. Reed and P. Howser, "The uncertainty in measurements made using the integrating nephelometer in fog," Meas. Sci. Technol. 6, 422-428 (1995).
[CrossRef]

1973 (1)

R. A. Rabinoff and B. M. Herman, "Effect of aerosol size distribution on the accuracy of the integrating nephelometer," J. Appl. Meteorol. 12, 184 - 186 (1973).
[CrossRef]

1970 (1)

D. S. Ensor and A. P. Waggoner, "Angular truncation error in the Integrating Nephelometer," Atmos. Environ. 4, 481 - 487 (1970).
[CrossRef]

Aerosol Sci. and Technol. (1)

J. E. Thompson, H. Nasajpour, B. W. Smith, and J. Winefordner, "Atmospheric aerosol measurement by cavity ringdown turbidimetry." Aerosol Sci. and Technol. 37, 221-230 (2003).
[CrossRef]

Aerosol Sci. Technol. (2)

P. J. Sheridan, W. P. Arnott, J. A. Ogren, E. Andrews, D. B. Atkinson, D. S. Covert, H. Moosmuller, A. Petzold, B. Schmid, A. W. Strawa, R. Varma, and A. Virkkula, "The Reno aerosol optics study: an evaluation of aerosol absorption measurement methods," Aerosol Sci. Technol. 39, 1-16 (2005).
[CrossRef]

H. Moosmuller, R. Varma, and W. Arnott, "Cavity ring-down and cavity-enhanced detection techniques for the measurement of aerosol extinction," Aerosol Sci. Technol. 39, 30-39 (2005).
[CrossRef]

Anal. Chem. (1)

J. E. Thompson, B. W. Smith, and J. Winefordner, "Monitoring atmospheric particulate matter through Cavity Ring-Down Spectroscopy," Anal. Chem. 74, 1962-1967 (2002).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

V. Bulatov, M. Fisher, and I. Schechter, "Aerosol analysis by cavity-ring-down laser spectroscopy," Anal. Chim. Acta,  466, 1-9 (2002).
[CrossRef]

Analyst (1)

J. D. Smith and D. B. Atkinson, "A portable pulsed cavity ring-down transmissometer for measurement of the optical extinction of the atmospheric aerosol," Analyst 126, 1216 (2001).
[CrossRef] [PubMed]

Appl. Opt. (1)

Atmos. Chem. Phys. Discuss. (1)

O. Schmid, P. Artaxo, W. P. Arnott, D. Chand, L. V. Gatti, G. P. Frank, A. Hoffer, M. Schmaiter, and M. O. Andreae, "Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin: Comparison and field calibration of absorption measurement techniques," Atmos. Chem. Phys. Discuss. 5, 9355-9404 (2005).
[CrossRef]

Atmos. Environ. (2)

W. P. Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, "Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description," Atmos. Environ. 33, 2845-2852 (1999).
[CrossRef]

D. S. Ensor and A. P. Waggoner, "Angular truncation error in the Integrating Nephelometer," Atmos. Environ. 4, 481 - 487 (1970).
[CrossRef]

Environ. Sci. Technol. (1)

L.-W. A. Chen, H. Moosmüller, W. P. Arnott, J. C. Chow, J. G. Watson, R. A. Susott, R. E. Babbitt, C. E. Wold, E. N. Lincoln, and W. M. Hao, "Emissions from Laboratory Combustion of Wildland Fuels: Emission Factors and Source Profiles," Environ. Sci. Technol. 41, 4317-4325 (2007).
[CrossRef] [PubMed]

J. Air Waste Manage. Assoc. (1)

S. E. Schwartz, "Uncertainty requirements in radiative forcing of climate change," J. Air Waste Manage. Assoc. 54, 1351-1359 (2004).

J. Appl. Meteorol. (1)

R. A. Rabinoff and B. M. Herman, "Effect of aerosol size distribution on the accuracy of the integrating nephelometer," J. Appl. Meteorol. 12, 184 - 186 (1973).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

A. W. Strawa, R. Castaneda, T. Owano, D. S. Baer, and B. A. Paldus, "The measurement of aerosol optical properties using continuous wave cavity ring-down techniques," J. Atmos. Ocean. Technol. 20, 454 - 465 (2003).
[CrossRef]

Meas. Sci. Technol. (1)

G. T. Reed and P. Howser, "The uncertainty in measurements made using the integrating nephelometer in fog," Meas. Sci. Technol. 6, 422-428 (1995).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

H. Moosmuller and W. P. Arnott, "Angular truncation errors in integrating nephelometry," Rev. Sci. Instrum. 74, 3492-3501 (2003).
[CrossRef]

Science (1)

S. Menon, J. Hansen, L. Nazarenko, and Y. Luo, "Climate effects of black carbon aerosols in China and India," Science 297, 2250-2253 (2002).
[CrossRef] [PubMed]

Other (4)

"Climate Change 2001: The Scientific Basis," Intergovernmental Panel on Climate Change, (2001).

A. McFarland "Deposition 2001a."http://www1.mengr.tamu.edu/ATL/depo.html.

Air Resource Specialists, Inc., "Reevaluation of HFC 134a (SUVA) Span Gas Multiplier," http://vista.cira.colostate.edu/DatawareHouse/IMPROVE/Data/OPTICAL/Nephelometer/NephReprocessing93_04_July2005.doc.

P. R. Bevington and D. K. Robinson, Data Reduction for the Physical Sciences (McGraw-Hill, New York, 1992), pp 41-50.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the Aerosol Albedometer. Laser light that is scattered from the CRDS beam is collected by the integrating sphere and measured with the scattering photomultiplier tube. Both the measured extinction and scattering originate from the exact same sample volume. Temperature/relative humidity probe and pressure sensor not shown for clarity.

Fig. 2.
Fig. 2.

Plot of truncation angle as a function of distance from an axial hole located at the pole of the sphere. Axial holes are located at d=0 and d=46 cm. As illustrated, truncation angle is highest for a particle which scatters light in the direction of an axial hole, from a location very near the same axial hole.

Fig. 3.
Fig. 3.

Data traces obtained when calibration gases filled the measurement cell. The grey trace represents the CRDS data, the red trace is the scattered light signal, and the black trace is the IS/ICRDS ratio.

Fig. 4.
Fig. 4.

Plot of scattering coefficient, extinction coefficient, and albedo (second y-axis) over time during a monitoring experiment in which 1.826 µm polystyrene spheres were atomized and introduced into the measurement cell. The average albedo measured for these particles during this experiment was 0.99.

Fig. 5.
Fig. 5.

Plot of scattering coefficient, extinction coefficient, and albedo (second y-axis) over time during a monitoring experiment in which (NH4)2SO4, india ink, and (NH4)2SO4 were sequentially added into the measurement chamber. Despite large changes in bext and bscat as the aerosols are introduced, one can observe a change in albedo as the switch is made between a non-absorbing and absorbing aerosol.

Fig. 6.
Fig. 6.

Aerosol extinction coefficient (bext ), scattering coefficient (bscat ), and albedo (ω) at Kearney, NE over 2 two days in October 2007. Blue data points represent extinction coefficient as measured by CRDS, the red circles represent scattering coefficient as measured with the integrating sphere, the black circles represent scattering coefficient measured with the reference nephelometer, and the thin green trace represents measured albedo as plotted on the second y-axis. All times reflect local time at Kearney, NE. The inset shows the correlation between scattering coefficient measured by the albedometer and the M903 reference nephelometer.

Fig. 7.
Fig. 7.

Propagated relative uncertainty in albedo vs. measured extinction coefficient for ω=0.8, 0.9, and 1.0.

Tables (1)

Tables Icon

Table 1. Measured Albedo of Several Test Aerosols

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ω = b scat b ext
τ = t r 2 [ ( 1 R ) + b ext L ]
b ext = 1 2.99 × 10 8 m / s ( 1 τ sam 1 τ air )
b ext = ( L total L sample ) ( 1 2.99 × 10 8 m / s ) ( 1 τ sam 1 τ air )
b scat = ( I S I RD ) ( 1 R ) ( 1 + R ) L × K
b scat = ( I S I RD ) ( 1 R ) ( 1 + R ) L × K = ( I S I RD ) × K
( I S I RD ) = ( 1 K ) × b scat
θ = arctan ( r d )
ω ± δ albedo = b scat ± δ scat b ext ± δ ext
s ω ω = ( s scat b scat ) 2 + ( s ext b ext ) 2

Metrics