B. T. Seaman, M. Krämer, D. Z. Anderson, and M. J. Holland, "Atomtronics: Ultracold-atom analogs of electronic devices," Phys. Rev. A 75, 023615 (2007).

[CrossRef]
[PubMed]

D. R. Scherer, C. N. Weiler, T. W. Neely, and B. P. Anderson, "Vortex formation by merging of multiple trapped Bose-Einstein condensates," Phys. Rev. Lett. 98, 110402 (2007).

[CrossRef]
[PubMed]

T. Inoue, N. Matsumoto, N. Fukuchia, Y. Kobayashi, and T. Hara, "Highly stable wavefront control using a hybrid liquid-crystal spatial light modulator," Proc. SPIE 6306, 630603 (2006).

[CrossRef]
[PubMed]

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, "Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator," Phys. Rev. A 73, 031402 (2006).

[CrossRef]
[PubMed]

J. Sebby-Strabley, R. T. R. Newell, J. O. Day, E. Brekke, and T. G. Walker, "High-density mesoscopic atom clouds in a holographic atom trap," Phys. Rev. A 71, 021401 (2005).

[CrossRef]
[PubMed]

P. Senthilkumaran, F. Wyrowski, and H. Schimmel, "Vortex stagnation problem in iterative Fourier-transform algorithms," Opt. Lasers Eng. 43, 43-56 (2005).

[CrossRef]
[PubMed]

B. DeMarco, C. Lannert, S. Vishveshwara, and T.-C. Wei, "Structure and stability of Mott-insulator shells of bosons trapped in an optical lattice," Phys. Rev. A 71, 063601 (2005).

[CrossRef]
[PubMed]

N. Bertaux, Y. Frauel, P. Réfrégier, and B. Javidi, "Speckle removal using a maximum-likelihood technique with isoline gray-level regularization," J. Opt. Soc. Am. A 21, 2283-2291 (2004).

[CrossRef]
[PubMed]

H. Kim and B. Lee, "Diffractive optical element with apodized aperature for shaping vortex-free diffraction image," Jpn. J. App. Phys. 43, 1530-1533 (2004).

[CrossRef]

H. Kim, B. Yang, and B. Lee, "Iterative Fourier transform algorithm with regularization for the optimal design of diffractive optical elements," J. Opt. Soc. Am. A 21, 2353-2365 (2004).

[CrossRef]

J. Estève, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bouchoule, C. I. Westbrook, and A. Aspect, "Role of wire imperfections in micromagnetic traps for atoms," Phys. Rev. A 70, 043629 (2004).

[CrossRef]
[PubMed]

O. Ripoll, V. Kettunen, and H. P. Herzig, "Review of iterative Fourier-transform algorithms for beam shaping applications," Opt. Eng. 43, 2549-2556 (2004).

[CrossRef]
[PubMed]

S. Bergamini, B. Durquié, M. Jones, L. Jacubowicz, A. Browaeys, and P. Grangier, "Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator," J. Opt. Soc. Am. B 21, 1889-1894 (2004).

[CrossRef]
[PubMed]

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, "Applications of spatial light modulators in atom optics," Opt. Express 11, 158-166 (2003).

[CrossRef]
[PubMed]

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).

[CrossRef]
[PubMed]

A. E. Leanhardt, Y. Shin, A. P. Chikkatur, D. Kielpinski, W. Ketterle, and D. E. Pritchard, "Bose-Einstein condensates near a microfabricated surface," Phys. Rev. Lett. 90, 100404 (2003).

[CrossRef]
[PubMed]

B. Damski, J. Zakrzewski, L. Santos, P. Zoller, and M. Lewenstein, "Atomic Bose and Anderson glasses in optical lattices," Phys. Rev. Lett. 91, 080403 (2003).

[CrossRef]
[PubMed]

An IFTA is most generically described using the block-projection algorithm formalism, which is not necessary for the relatively simple MRAF algorithm. For a description of the block-projection formalism as applied to IFTAs, see R. Piestun and J. Shamir, "Synthesis of Three-Dimensional Light Fields and Applications," Proc. IEEE 90, 222-244 (2002).

[CrossRef]
[PubMed]

S. Bühling and F. Wyrowski, "Improved transmission design algorithms by utilizing variable-strength projections," J. Mod. Opt. 49, 1871-1892 (2002).

[CrossRef]
[PubMed]

J. S. Liu and M. R. Taghizadeh, "Iterative algorithm for the design of diffractive phase elements for laser beam shaping," Opt. Lett. 27, 1463-1465 (2002).

[CrossRef]
[PubMed]

A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, "Propagation of Bose-Einstein condensates in a magnetic waveguide," Phys. Rev. Lett. 89, 040401 (2002).

[CrossRef]
[PubMed]

J. Fortágh, H. Ott, S. Kraft, A. Günther, and C. Zimmermann, "Surface effects in magnetic microtraps," Phys. Rev. A 66, 041604 (2002).

[CrossRef]
[PubMed]

P. Senthilkumaran and F. Wyrowski, "Phase synthesis in wave-optical engineering: mapping- and diffuser-type approaches," J. Mod. Opt. 49, 1831-1850 (2002).

[CrossRef]
[PubMed]

V. Arrizón, M. Testorf, S. Sinzinger, and J. Jahns, "Iterative optimization of phase-only diffractive optical elements based on a lenslet array," J. Opt. Soc. Am. A 17, 2157-2164 (2000).

[CrossRef]
[PubMed]

K.-H. Brenner, "Method for designing arbitrary two-dimensional continutous phase elements," Opt. Lett. 25, 31-33 (2000).

[CrossRef]
[PubMed]

A. Bezryadin, C. N. Lau, and M. Tinkham, "Quantum suppression of superconductivity in ultrathin nanowires," Nature 404, 971-974 (2000).

[CrossRef]
[PubMed]

R. Ozeri, L. Khaykovich, and N. Davidson, "Long spin relaxation times in a single-beam blue-detuned optical trap," Phys. Rev. A 59, R1750-R1753 (1999).

[CrossRef]
[PubMed]

V. V. Kotlyar, P. G. Seraphimovich, and V. A. Soifer, "An iterative algorithm for designing diffractive optical elements with regularization," Opt. Laser Eng. 29, 261-268 (1998).

[CrossRef]
[PubMed]

D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, "Cold bosonic atoms in optical lattices," Phys. Rev. Lett. 81, 3108-3111 (1998).

[CrossRef]
[PubMed]

H. Aagedal, M. Schmid, T. Beth, S. Tiewes, and F. Wyrowski, "Theory of speckles in diffractive optics and its application to beam shaping," J. Mod. Opt. 43, 1409-1421 (1996).

[CrossRef]

H. Akahori, "Spectrum leveling by an iterative algorithm with a dummy area for synthesizing the kinoform," App. Opt. 25, 802-811 (1986).

[CrossRef]

J. R. Fienup, "Iterative method applied to image reconstruction and to computer-generated holograms," Opt. Eng. 19, 297-305 (1980).

[PubMed]

H. Akahori, "Spectrum leveling by an iterative algorithm with a dummy area for synthesizing the kinoform," App. Opt. 25, 802-811 (1986).

[CrossRef]

M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, "Synthesis of digital holograms by direct binary search," Appl. Opt. 26, 2788-2798 (1987).

[CrossRef]
[PubMed]

L. Legeard, P. Réfrégier, and P. Ambs, "Multicriteria optimality for iterative encoding of computer-generated holograms," Appl. Opt. 36, 7444-7449 (1997).

[CrossRef]

M. Gruber, "Diffractive optical elements as raster-image generators", Appl. Opt. 40, 5830-5839 (2001).

[CrossRef]
[PubMed]

E. A. Sziklas and A. E. Siegman, "Mode calculations in unstable resonators with flowing saturable gain. 2: Fast Fourier transform method," Appl. Opt. 14, 1874-1889 (1975).

[CrossRef]
[PubMed]

L. Bigué and P. Ambs, "Optimal multicriteria approach to the iterative Fourier transform algorithm," Appl. Opt. 40, 5886-5893 (2001).

[CrossRef]
[PubMed]

S. Bühling and F. Wyrowski, "Improved transmission design algorithms by utilizing variable-strength projections," J. Mod. Opt. 49, 1871-1892 (2002).

[CrossRef]
[PubMed]

P. Senthilkumaran and F. Wyrowski, "Phase synthesis in wave-optical engineering: mapping- and diffuser-type approaches," J. Mod. Opt. 49, 1831-1850 (2002).

[CrossRef]
[PubMed]

H. Aagedal, M. Schmid, T. Beth, S. Tiewes, and F. Wyrowski, "Theory of speckles in diffractive optics and its application to beam shaping," J. Mod. Opt. 43, 1409-1421 (1996).

[CrossRef]

F. Wyrowski and O. Brynghdahl, "Iterative Fourier-transform algorithm applied to computer holography," J. Opt. Soc. Am. A 5, 1058-1065 (1988).

[CrossRef]
[PubMed]

F. Wyrowski, "Diffractive optical elements: iterative calculation of quantized, blazed phase structures," J. Opt. Soc. Am. A 7, 961-969 (1990).

[CrossRef]
[PubMed]

F. Wyrowski, "Diffraction efficiency of analog and quantized digital amplitude holograms: analysis and manipulation," J. Opt. Soc. Am. A 7, 383-393 (1990).

[CrossRef]
[PubMed]

V. Arrizón, M. Testorf, S. Sinzinger, and J. Jahns, "Iterative optimization of phase-only diffractive optical elements based on a lenslet array," J. Opt. Soc. Am. A 17, 2157-2164 (2000).

[CrossRef]
[PubMed]

H. Kim, B. Yang, and B. Lee, "Iterative Fourier transform algorithm with regularization for the optimal design of diffractive optical elements," J. Opt. Soc. Am. A 21, 2353-2365 (2004).

[CrossRef]

N. Bertaux, Y. Frauel, P. Réfrégier, and B. Javidi, "Speckle removal using a maximum-likelihood technique with isoline gray-level regularization," J. Opt. Soc. Am. A 21, 2283-2291 (2004).

[CrossRef]
[PubMed]

H. Kim and B. Lee, "Diffractive optical element with apodized aperature for shaping vortex-free diffraction image," Jpn. J. App. Phys. 43, 1530-1533 (2004).

[CrossRef]

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).

[CrossRef]
[PubMed]

A. Bezryadin, C. N. Lau, and M. Tinkham, "Quantum suppression of superconductivity in ultrathin nanowires," Nature 404, 971-974 (2000).

[CrossRef]
[PubMed]

J. R. Fienup, "Iterative method applied to image reconstruction and to computer-generated holograms," Opt. Eng. 19, 297-305 (1980).

[PubMed]

O. Ripoll, V. Kettunen, and H. P. Herzig, "Review of iterative Fourier-transform algorithms for beam shaping applications," Opt. Eng. 43, 2549-2556 (2004).

[CrossRef]
[PubMed]

V. V. Kotlyar, P. G. Seraphimovich, and V. A. Soifer, "An iterative algorithm for designing diffractive optical elements with regularization," Opt. Laser Eng. 29, 261-268 (1998).

[CrossRef]
[PubMed]

P. Senthilkumaran, F. Wyrowski, and H. Schimmel, "Vortex stagnation problem in iterative Fourier-transform algorithms," Opt. Lasers Eng. 43, 43-56 (2005).

[CrossRef]
[PubMed]

S. N. Dixit, J. K. Lawson, K. R. Manes, H. T. Powell, and K. A. Nugent, "Kinoform phase plates for focal plane irradiance profile control," Opt. Lett. 19, 417-419 (1994).

[PubMed]

Y. Lin, T. J. Kessler, and G. Lawrence, "Distributed phase plates for super-Gaussian focal-plane irradiance profiles," Opt. Lett. 20, 764-766 (1995).

[CrossRef]
[PubMed]

J. S. Liu and M. R. Taghizadeh, "Iterative algorithm for the design of diffractive phase elements for laser beam shaping," Opt. Lett. 27, 1463-1465 (2002).

[CrossRef]
[PubMed]

K.-H. Brenner, "Method for designing arbitrary two-dimensional continutous phase elements," Opt. Lett. 25, 31-33 (2000).

[CrossRef]
[PubMed]

B. DeMarco, C. Lannert, S. Vishveshwara, and T.-C. Wei, "Structure and stability of Mott-insulator shells of bosons trapped in an optical lattice," Phys. Rev. A 71, 063601 (2005).

[CrossRef]
[PubMed]

R. Ozeri, L. Khaykovich, and N. Davidson, "Long spin relaxation times in a single-beam blue-detuned optical trap," Phys. Rev. A 59, R1750-R1753 (1999).

[CrossRef]
[PubMed]

B. T. Seaman, M. Krämer, D. Z. Anderson, and M. J. Holland, "Atomtronics: Ultracold-atom analogs of electronic devices," Phys. Rev. A 75, 023615 (2007).

[CrossRef]
[PubMed]

J. Sebby-Strabley, R. T. R. Newell, J. O. Day, E. Brekke, and T. G. Walker, "High-density mesoscopic atom clouds in a holographic atom trap," Phys. Rev. A 71, 021401 (2005).

[CrossRef]
[PubMed]

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, "Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator," Phys. Rev. A 73, 031402 (2006).

[CrossRef]
[PubMed]

J. Fortágh, H. Ott, S. Kraft, A. Günther, and C. Zimmermann, "Surface effects in magnetic microtraps," Phys. Rev. A 66, 041604 (2002).

[CrossRef]
[PubMed]

J. Estève, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bouchoule, C. I. Westbrook, and A. Aspect, "Role of wire imperfections in micromagnetic traps for atoms," Phys. Rev. A 70, 043629 (2004).

[CrossRef]
[PubMed]

B. Damski, J. Zakrzewski, L. Santos, P. Zoller, and M. Lewenstein, "Atomic Bose and Anderson glasses in optical lattices," Phys. Rev. Lett. 91, 080403 (2003).

[CrossRef]
[PubMed]

A. E. Leanhardt, Y. Shin, A. P. Chikkatur, D. Kielpinski, W. Ketterle, and D. E. Pritchard, "Bose-Einstein condensates near a microfabricated surface," Phys. Rev. Lett. 90, 100404 (2003).

[CrossRef]
[PubMed]

A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, "Propagation of Bose-Einstein condensates in a magnetic waveguide," Phys. Rev. Lett. 89, 040401 (2002).

[CrossRef]
[PubMed]

D. R. Scherer, C. N. Weiler, T. W. Neely, and B. P. Anderson, "Vortex formation by merging of multiple trapped Bose-Einstein condensates," Phys. Rev. Lett. 98, 110402 (2007).

[CrossRef]
[PubMed]

D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, "Cold bosonic atoms in optical lattices," Phys. Rev. Lett. 81, 3108-3111 (1998).

[CrossRef]
[PubMed]

An IFTA is most generically described using the block-projection algorithm formalism, which is not necessary for the relatively simple MRAF algorithm. For a description of the block-projection formalism as applied to IFTAs, see R. Piestun and J. Shamir, "Synthesis of Three-Dimensional Light Fields and Applications," Proc. IEEE 90, 222-244 (2002).

[CrossRef]
[PubMed]

T. Inoue, N. Matsumoto, N. Fukuchia, Y. Kobayashi, and T. Hara, "Highly stable wavefront control using a hybrid liquid-crystal spatial light modulator," Proc. SPIE 6306, 630603 (2006).

[CrossRef]
[PubMed]

A 768×768 pixel kinoform and 256 discrete phase levels were used to match a commercially available, scientificgrade SLM: the Hamamatsu X8267.

[PubMed]

The code used to generate results for the MRAF algorithm in this paper is available at http://research.physics.uiuc.edu/DeMarco/publications.htm.

T. Willmore, Riemannian Geometry (Oxford University Press, 1997).

We introduce several quantities in this manuscript which are functions of the input and output plane coordinates. For notational simplicity, we indicate this functional dependence only for the first use and when quantities are explicitly written as functions of the coordinates.

G. C. Spalding, J. Courtial, and R. DiLeonardo, "Holographic Optical Trapping," in Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces, D. L. Andrews, ed., (Elsevier Press) (to be published).

[PubMed]

V. Soifer, Methods for Computer Design of Diffractive Optical Elements (John Wiley and Sons, NY, 2002).

[PubMed]

We assume in this paper that only the center of a Gaussian beam interacts with the CGH, making the effect of intrinsic phase curvature negligible. Any effect of the intrisic phase curvature can be removed in the final kinoform using a compensating phase profile.

[PubMed]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1998).

[PubMed]