Abstract

Advances in plasmonic nanoparticle synthesis afford new opportunities for biosensing applications. Here, we apply a combination of a new type of plasmonic nanomaterial – stellated nanoparticles, and polarization-sensitive darkfield microscopy for detecting molecular assemblies and tracking of individual epidermal growth factor receptors within single live cells with high signal-to-background ratio. Depolarization of linear polarized light by stellated nanoparticles is over 15-fold more efficient than similarly-sized spheroidal nanoparticles. This efficient light depolarization allows robust detection of molecules labeled with stellated nanoparticles in cross-polarized imaging where the intrinsic light scattering from cells is significantly reduced. The imaging can be carried out with single molecule sensitivity for essentially unlimited time with no signal degradation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. S. Lidke, P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman, and T. M. Jovin, "Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction," Nat. Biotechnol. 22, 198-203 (2004).
    [CrossRef] [PubMed]
  2. M. Lakadamyali, M. J. Rust, H. P. Babcock, and X. Zhuang, "Visualizing infection of individual influenza viruses," Proc. Natl. Acad. Sci. USA 100, 9280-9285 (2003).
    [CrossRef] [PubMed]
  3. L. Cai, N. Friedman, and X. S. Xie, "Stochastic protein expression in individual cells at the single molecule level," Nature 440, 358-362 (2006).
    [CrossRef] [PubMed]
  4. W. C. Chan and S. Nie, "Quantum dot bioconjugates for ultrasensitive nonisotopic detection," Science 281, 2016-2018. (1998).
    [CrossRef] [PubMed]
  5. X. Gao, W. C. W. Chan, and S. Nie, "Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding," J. Biomed. Opt. 7, 532-537 (2002).
    [CrossRef] [PubMed]
  6. C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, "Looking towards label-free biomolecular interaction analysis in a highthroughput format: a review of new surface plasmon resonance technologies," Curr. Opin. Biotechnol. 17, 400-405 (2006).
    [CrossRef] [PubMed]
  7. N. Calander, "Molecular detection and analysis by using surface plasmon resonances," Curr. Anal. Chem. 2, 203-211 (2006).
    [CrossRef] [PubMed]
  8. P. Alivisatos, "The use of nanocrystals in biological detection," Nat. Biotechnol. 22, 47-52 (2004).
    [CrossRef] [PubMed]
  9. C. Soennichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005).
    [CrossRef] [PubMed]
  10. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
    [PubMed]
  11. J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. Jose-Yacaman, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, "Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in Vivo," J. Biomed. Opt. 12, 034007 (2007).
    [CrossRef] [PubMed]
  12. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer," Nano Lett. 5, 829-834 (2005).
    [CrossRef] [PubMed]
  13. C. Loo, L. Hirsch, M.-H. Lee, E. Chang, J. West, N. Halas, and R. Drezek, "Gold nanoshell bioconjugates for molecular imaging in living cells," Opt. Lett. 30, 1012-1014 (2005).
    [CrossRef] [PubMed]
  14. S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, "Molecular specific optoacoustic imaging with plasmonic nanoparticles," Opt. Express 15, 6583-6588 (2007).
    [CrossRef] [PubMed]
  15. T. A. Larson, J. Bankson, J. Aaron, and K. Sokolov, "Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells," Nanotechnology 18, 325101 (2007).
    [CrossRef] [PubMed]
  16. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, "Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance," Proc. Nat. Acad. Sci. 100, 13549-13554 (2003).
    [CrossRef] [PubMed]
  17. C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, "Selective cell targeting with light-absorbing microparticles and nanoparticles," Biophys. J. 84, 4023-4032 (2003).
    [CrossRef] [PubMed]
  18. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5, 709-711 (2005).
    [CrossRef] [PubMed]
  19. R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry, "Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview," Langmuir 21, 10644-10654 (2005).
    [CrossRef] [PubMed]
  20. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," Proc. Natl. Acad. Sci. USA 97, 996-1001 (2000).
    [CrossRef] [PubMed]
  21. C. S. Thaxton and C. A. Mirkin, "DNA-gold-nanoparticle conjugates," IEE Proc.: Nanobiotechnol. 288-307 (2004).
  22. C. Oliver, "Conjugation of colloidal gold to proteins," Methods Mol. Bio. 115, 331-334 (1999).
    [PubMed]
  23. S. Kumar, N. Harrison, R. Richards-Kortum, and K. Sokolov, "Plasmonic nanosensors for imaging intracellular biomarkers in live cells," Nano Lett. 7, 1338-1343 (2007).
    [CrossRef] [PubMed]
  24. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, "Nanoengineering of optical resonances," Chem. Phys. Lett. 288, 243-247 (1998).
    [CrossRef] [PubMed]
  25. A. V. Alekseeva, V. A. Bogatyrev, B. N. Khlebtsov, A. G. Mel'nikov, L. A. Dykman, and N. G. Khlebtsov, "Gold nanorods: Synthesis and optical properties," Colloid J. 68, 661-678 (2006).
    [CrossRef] [PubMed]
  26. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, "The `lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal," Chem. Phys. Lett. 317, 517-523 (2000).
    [CrossRef] [PubMed]
  27. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, "Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods," Nano Lett. 7, 941-945 (2007).
    [CrossRef] [PubMed]
  28. M. L. Sandrock, C. D. Pibel, F. M. Geiger, and C. A. Foss, Jr., "Synthesis and Second-Harmonic Generation studies of Noncentrosymmetric Gold Nanostructures," J. Phys. Chem. B 103, 2668-2673 (1999).
    [CrossRef]
  29. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," Proc. Nat. Acad. Sci. 102, 15752-15756 (2005).
    [CrossRef] [PubMed]
  30. J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents," Nano Lett. 5, 5 (2005).
    [CrossRef] [PubMed]
  31. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, "Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect," Nano Lett. 5, 119-124 (2005).
    [CrossRef] [PubMed]
  32. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett. 90, 057401 (2003).
    [CrossRef] [PubMed]
  33. F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon resonances of a gold nanostar," Nano Lett. 7, 729-732 (2007).
    [CrossRef] [PubMed]
  34. C. L. Nehl, H. Liao, and J. H. Hafner, "Optical properties of star-shaped gold nanoparticles," Nano Lett. 6, 683-688 (2006).
    [CrossRef] [PubMed]
  35. J. L. Burt, J. L. Elechiguerra, J. Reyes-Gasga, J. Martin Montejano-Carrizales, and M. Jose-Yacaman, "Beyond archimedean solids: Star polyhedral gold nanocrystals," J. Cryst. Growth 285, 681-691 (2005).
    [CrossRef]
  36. C. Soennichsen and A. P. Alivisatos, "Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy," Nano Letters 5, 301-304 (2005).
    [CrossRef]
  37. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Field polarization and polarization charge distributions in plasmon resonant nanoparticles," New J. Phys. 2, Article No. 27 (2000).
    [CrossRef]
  38. J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, "Composite plasmon resonant nanowires," Nano Lett. 2, 465-469 (2002).
    [CrossRef]
  39. M. L. Sandrock and C. A. Foss, Jr., "Synthesis and linear optical properties of nanoscopic gold particle pair structures," J. Phys. Chem. B 103, 11398-11406 (1999).
    [CrossRef] [PubMed]
  40. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
    [CrossRef] [PubMed]
  41. L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, "Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms," Appl. Opt. 43, 1308-1319 (2004).
    [CrossRef] [PubMed]
  42. S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129. (2000).
    [CrossRef] [PubMed]
  43. C. J. Barnes and R. Kumar, "Biology of the epidermal growth factor receptor family," in Molecular Targeting and Transduction, (Cancer Treatment and Research, 2004) Vol. 119, pp.1-13.
    [CrossRef] [PubMed]
  44. K. R. Brown and M. J. Natan, "Hydroxylamine seeding of colloidal au nanoparticles in solution and on surfaces," Langmuir 14, 726-728 (1998).
    [CrossRef] [PubMed]
  45. G. Frens, "Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions," Nature (London) Phys. Sci. 241, 20-22 (1973).
    [PubMed]
  46. J. S. Aaron, J. Oh, T. A. Larson, S. Kumar, T. E. Milner, and K. V. Sokolov, "Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold/iron oxide nanoparticles," Opt. Express 14, 12930-12943 (2006).
    [CrossRef] [PubMed]
  47. J. M. Lerner, "Imaging spectrometer fundamentals for researchers in the biosciences--A tutorial," Cytomet. A 69A, 712-734 (2006).
    [CrossRef]
  48. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, "Capabilities andLimitations of a Current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers," J. Quant. Spectrosc. Radiat. Transf. 60, 309-324 (1998).
    [CrossRef] [PubMed]
  49. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, "T-matrix computations of light scattering by nonspherical particles: a review," J. Quant. Spectrosc. Radiat. Transf. 55, 535-575 (1996).
    [CrossRef]
  50. D. W. Mackowski., "Analysis of radiative scattering for multiple sphere configurations," Proc. R. Soc. London 433, 599-614 (1991).
    [CrossRef] [PubMed]
  51. D. W. Mackowski, "Calculation of total cross sections of multiplesphere clusters," J. Opt. Soc. Am. 11, 2851-2861 (1994).
    [CrossRef]
  52. D. W. Mackowski and M. I. Mishchenko, "Calculation of the T-matrix and the scattering matrix for ensembles of spheres," J. Opt. Soc. Am. A 13, 2266-2278 (1996).
    [CrossRef]
  53. B. Stout, J.-C. Auger, and J. Lafait, "A transfer matrix approach to local field calculations in multiple-scattering problems," J. Mod. Opt. 49, 2129-2152 (2002).
    [CrossRef]
  54. B. T. Draine and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A 11, 1491- (1994).
    [CrossRef]
  55. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength," J. Quant. Spectrosc. Radiat. Transf. 106, 546-557 (2007).
    [CrossRef]
  56. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  57. U. Kreibig, "Properties of Small Particles in Insulating Matrices," in Contribution of Clusters Physics to Material Science and Technology From Isolated Clusters to Aggregated Materials, J. Davenas, and P. M. Rabette, eds. (Klewer Academic Publishers, New York, NY, 1986), pp. 373-423.
  58. P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, "Release on the refractive index of ordinary water substance as a function of wavelength, temperature and pressure," in Technical Report (The International Association for the Properties of Water and Steam (IAPWS), 1997).
  59. R. N. Fabricant, J. E. D. Larco, and G. J. Todaro, "Nerve growth factor receptors on human melanoma cells in culture," Proc. Nat. Acad. Sci. 74, 565-569 (1977).
    [CrossRef] [PubMed]
  60. M. M. Wrann and C. F. Fox, "Identification of epidermal growth factor receptors in a hyperproducing human epidermoid carcinoma cell line," J. Biochem. 254, 8083-8086 (1979).
  61. A. Vieira, C. Lamaze, and S. L. Schmid, "Control of EGF receptor signaling by clathrin-mediated endocytosis," Science 274, 2086-2089 (1996).
    [CrossRef] [PubMed]
  62. G. Carpenter, "Receptors for epidermal growth factor and other polypeptide mitogens," Annu. Rev. Biochem. 56, 881-914 (1987).
    [CrossRef] [PubMed]
  63. P. Burke, K. Schooler, and H. S. Wiley, "Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking," Mol. Biol. Cell 12, 1897-1910 (2001).
  64. T. Basche, S. Nie, and J. M. Fernandez, "Single molecules," Proc. Natl. Acad. Sci. 98, 10527-10528 (2001).
    [CrossRef] [PubMed]
  65. T. Wilson and B. R. Masters, "Confocal Microscopy," Appl. Opt. 33, 565 (1994).
    [CrossRef] [PubMed]
  66. R. Brock, M. A. Hink, and T. M. Jovin, "Fluorescence correlation microscopy of cells in the presence of autofluorescence," Biophys. J. 75, 2547-2557 (1998).
    [CrossRef] [PubMed]
  67. D. Axelrod, "Total internal reflection fluorescence microscopy in cell biology," Traffic 2, 764-774 (2001).
    [CrossRef] [PubMed]
  68. T. A. Byassee, W. C. W. Chan, and S. Nie, "Probing single molecules in single living cells," Anal. Chem. 72, 5606-5611 (2000).
    [CrossRef] [PubMed]
  69. L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, "Single metallic nanoparticle imaging for protein detection in cells," Proc. Natl. Acad. Sci. 100, 11350-11355 (2003).
    [CrossRef] [PubMed]
  70. G. I. Mashanov, D. Tacon, A. E. Knight, M. Peckham, and J. E. Molloy, "Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy," Methods 29, 142-152 (2003).
    [CrossRef] [PubMed]
  71. V. Sankaran, M. J. Everett, D. J. Maitland, and J. T. Walsh, "Comparison of polarized-light propagation in biological tissue and phantoms," Opt. Lett. 25, 1044-1046 (1999).
    [CrossRef]
  72. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nat. Med. 7, 1245-1248 (2001).
    [CrossRef] [PubMed]
  73. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
    [CrossRef]
  74. K. Sokolov, R. Drezek, K. Gossage, and R. Richards-Kortum, "Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology?," Opt. Express 15, 302-317 (1999).
    [CrossRef]
  75. P. M. F. Nielsen, F. N. Reinholz, and P. G. Charette, "Polarization-sensitive scanned fiber confocal microscope," Opt. Eng. 35, 3084-3091 (1996).
    [CrossRef]
  76. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934 (1997).
    [CrossRef] [PubMed]
  77. S. Kumar, J.S. Aaron, K.V. Sokolov, "Directional conjugation of antibodies to nanoparticles for Ssynthesis of multiplexed optical contrast agents with both delivery and targeting moieties," Nat. Protocols (2008) (in press).
    [CrossRef]

2008 (1)

S. Kumar, J.S. Aaron, K.V. Sokolov, "Directional conjugation of antibodies to nanoparticles for Ssynthesis of multiplexed optical contrast agents with both delivery and targeting moieties," Nat. Protocols (2008) (in press).
[CrossRef]

2007 (7)

S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, "Molecular specific optoacoustic imaging with plasmonic nanoparticles," Opt. Express 15, 6583-6588 (2007).
[CrossRef] [PubMed]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength," J. Quant. Spectrosc. Radiat. Transf. 106, 546-557 (2007).
[CrossRef]

T. A. Larson, J. Bankson, J. Aaron, and K. Sokolov, "Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells," Nanotechnology 18, 325101 (2007).
[CrossRef] [PubMed]

S. Kumar, N. Harrison, R. Richards-Kortum, and K. Sokolov, "Plasmonic nanosensors for imaging intracellular biomarkers in live cells," Nano Lett. 7, 1338-1343 (2007).
[CrossRef] [PubMed]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, "Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods," Nano Lett. 7, 941-945 (2007).
[CrossRef] [PubMed]

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon resonances of a gold nanostar," Nano Lett. 7, 729-732 (2007).
[CrossRef] [PubMed]

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. Jose-Yacaman, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, "Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in Vivo," J. Biomed. Opt. 12, 034007 (2007).
[CrossRef] [PubMed]

2006 (7)

C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, "Looking towards label-free biomolecular interaction analysis in a highthroughput format: a review of new surface plasmon resonance technologies," Curr. Opin. Biotechnol. 17, 400-405 (2006).
[CrossRef] [PubMed]

N. Calander, "Molecular detection and analysis by using surface plasmon resonances," Curr. Anal. Chem. 2, 203-211 (2006).
[CrossRef] [PubMed]

C. L. Nehl, H. Liao, and J. H. Hafner, "Optical properties of star-shaped gold nanoparticles," Nano Lett. 6, 683-688 (2006).
[CrossRef] [PubMed]

L. Cai, N. Friedman, and X. S. Xie, "Stochastic protein expression in individual cells at the single molecule level," Nature 440, 358-362 (2006).
[CrossRef] [PubMed]

A. V. Alekseeva, V. A. Bogatyrev, B. N. Khlebtsov, A. G. Mel'nikov, L. A. Dykman, and N. G. Khlebtsov, "Gold nanorods: Synthesis and optical properties," Colloid J. 68, 661-678 (2006).
[CrossRef] [PubMed]

J. M. Lerner, "Imaging spectrometer fundamentals for researchers in the biosciences--A tutorial," Cytomet. A 69A, 712-734 (2006).
[CrossRef]

J. S. Aaron, J. Oh, T. A. Larson, S. Kumar, T. E. Milner, and K. V. Sokolov, "Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold/iron oxide nanoparticles," Opt. Express 14, 12930-12943 (2006).
[CrossRef] [PubMed]

2005 (10)

C. Loo, L. Hirsch, M.-H. Lee, E. Chang, J. West, N. Halas, and R. Drezek, "Gold nanoshell bioconjugates for molecular imaging in living cells," Opt. Lett. 30, 1012-1014 (2005).
[CrossRef] [PubMed]

C. Soennichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005).
[CrossRef] [PubMed]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," Proc. Nat. Acad. Sci. 102, 15752-15756 (2005).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents," Nano Lett. 5, 5 (2005).
[CrossRef] [PubMed]

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, "Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect," Nano Lett. 5, 119-124 (2005).
[CrossRef] [PubMed]

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry, "Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview," Langmuir 21, 10644-10654 (2005).
[CrossRef] [PubMed]

J. L. Burt, J. L. Elechiguerra, J. Reyes-Gasga, J. Martin Montejano-Carrizales, and M. Jose-Yacaman, "Beyond archimedean solids: Star polyhedral gold nanocrystals," J. Cryst. Growth 285, 681-691 (2005).
[CrossRef]

C. Soennichsen and A. P. Alivisatos, "Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy," Nano Letters 5, 301-304 (2005).
[CrossRef]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer," Nano Lett. 5, 829-834 (2005).
[CrossRef] [PubMed]

2004 (3)

P. Alivisatos, "The use of nanocrystals in biological detection," Nat. Biotechnol. 22, 47-52 (2004).
[CrossRef] [PubMed]

D. S. Lidke, P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman, and T. M. Jovin, "Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction," Nat. Biotechnol. 22, 198-203 (2004).
[CrossRef] [PubMed]

L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, "Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms," Appl. Opt. 43, 1308-1319 (2004).
[CrossRef] [PubMed]

2003 (8)

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, "Single metallic nanoparticle imaging for protein detection in cells," Proc. Natl. Acad. Sci. 100, 11350-11355 (2003).
[CrossRef] [PubMed]

G. I. Mashanov, D. Tacon, A. E. Knight, M. Peckham, and J. E. Molloy, "Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy," Methods 29, 142-152 (2003).
[CrossRef] [PubMed]

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

M. Lakadamyali, M. J. Rust, H. P. Babcock, and X. Zhuang, "Visualizing infection of individual influenza viruses," Proc. Natl. Acad. Sci. USA 100, 9280-9285 (2003).
[CrossRef] [PubMed]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef] [PubMed]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, "Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance," Proc. Nat. Acad. Sci. 100, 13549-13554 (2003).
[CrossRef] [PubMed]

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, "Selective cell targeting with light-absorbing microparticles and nanoparticles," Biophys. J. 84, 4023-4032 (2003).
[CrossRef] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

2002 (3)

X. Gao, W. C. W. Chan, and S. Nie, "Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding," J. Biomed. Opt. 7, 532-537 (2002).
[CrossRef] [PubMed]

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, "Composite plasmon resonant nanowires," Nano Lett. 2, 465-469 (2002).
[CrossRef]

B. Stout, J.-C. Auger, and J. Lafait, "A transfer matrix approach to local field calculations in multiple-scattering problems," J. Mod. Opt. 49, 2129-2152 (2002).
[CrossRef]

2001 (4)

P. Burke, K. Schooler, and H. S. Wiley, "Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking," Mol. Biol. Cell 12, 1897-1910 (2001).

T. Basche, S. Nie, and J. M. Fernandez, "Single molecules," Proc. Natl. Acad. Sci. 98, 10527-10528 (2001).
[CrossRef] [PubMed]

D. Axelrod, "Total internal reflection fluorescence microscopy in cell biology," Traffic 2, 764-774 (2001).
[CrossRef] [PubMed]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nat. Med. 7, 1245-1248 (2001).
[CrossRef] [PubMed]

2000 (4)

T. A. Byassee, W. C. W. Chan, and S. Nie, "Probing single molecules in single living cells," Anal. Chem. 72, 5606-5611 (2000).
[CrossRef] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129. (2000).
[CrossRef] [PubMed]

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, "The `lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal," Chem. Phys. Lett. 317, 517-523 (2000).
[CrossRef] [PubMed]

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," Proc. Natl. Acad. Sci. USA 97, 996-1001 (2000).
[CrossRef] [PubMed]

1999 (6)

C. Oliver, "Conjugation of colloidal gold to proteins," Methods Mol. Bio. 115, 331-334 (1999).
[PubMed]

M. L. Sandrock, C. D. Pibel, F. M. Geiger, and C. A. Foss, Jr., "Synthesis and Second-Harmonic Generation studies of Noncentrosymmetric Gold Nanostructures," J. Phys. Chem. B 103, 2668-2673 (1999).
[CrossRef]

M. L. Sandrock and C. A. Foss, Jr., "Synthesis and linear optical properties of nanoscopic gold particle pair structures," J. Phys. Chem. B 103, 11398-11406 (1999).
[CrossRef] [PubMed]

V. Sankaran, M. J. Everett, D. J. Maitland, and J. T. Walsh, "Comparison of polarized-light propagation in biological tissue and phantoms," Opt. Lett. 25, 1044-1046 (1999).
[CrossRef]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

K. Sokolov, R. Drezek, K. Gossage, and R. Richards-Kortum, "Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology?," Opt. Express 15, 302-317 (1999).
[CrossRef]

1998 (5)

R. Brock, M. A. Hink, and T. M. Jovin, "Fluorescence correlation microscopy of cells in the presence of autofluorescence," Biophys. J. 75, 2547-2557 (1998).
[CrossRef] [PubMed]

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, "Capabilities andLimitations of a Current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers," J. Quant. Spectrosc. Radiat. Transf. 60, 309-324 (1998).
[CrossRef] [PubMed]

W. C. Chan and S. Nie, "Quantum dot bioconjugates for ultrasensitive nonisotopic detection," Science 281, 2016-2018. (1998).
[CrossRef] [PubMed]

K. R. Brown and M. J. Natan, "Hydroxylamine seeding of colloidal au nanoparticles in solution and on surfaces," Langmuir 14, 726-728 (1998).
[CrossRef] [PubMed]

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, "Nanoengineering of optical resonances," Chem. Phys. Lett. 288, 243-247 (1998).
[CrossRef] [PubMed]

1997 (1)

1996 (4)

P. M. F. Nielsen, F. N. Reinholz, and P. G. Charette, "Polarization-sensitive scanned fiber confocal microscope," Opt. Eng. 35, 3084-3091 (1996).
[CrossRef]

D. W. Mackowski and M. I. Mishchenko, "Calculation of the T-matrix and the scattering matrix for ensembles of spheres," J. Opt. Soc. Am. A 13, 2266-2278 (1996).
[CrossRef]

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, "T-matrix computations of light scattering by nonspherical particles: a review," J. Quant. Spectrosc. Radiat. Transf. 55, 535-575 (1996).
[CrossRef]

A. Vieira, C. Lamaze, and S. L. Schmid, "Control of EGF receptor signaling by clathrin-mediated endocytosis," Science 274, 2086-2089 (1996).
[CrossRef] [PubMed]

1994 (2)

D. W. Mackowski, "Calculation of total cross sections of multiplesphere clusters," J. Opt. Soc. Am. 11, 2851-2861 (1994).
[CrossRef]

T. Wilson and B. R. Masters, "Confocal Microscopy," Appl. Opt. 33, 565 (1994).
[CrossRef] [PubMed]

1991 (1)

D. W. Mackowski., "Analysis of radiative scattering for multiple sphere configurations," Proc. R. Soc. London 433, 599-614 (1991).
[CrossRef] [PubMed]

1987 (1)

G. Carpenter, "Receptors for epidermal growth factor and other polypeptide mitogens," Annu. Rev. Biochem. 56, 881-914 (1987).
[CrossRef] [PubMed]

1979 (1)

M. M. Wrann and C. F. Fox, "Identification of epidermal growth factor receptors in a hyperproducing human epidermoid carcinoma cell line," J. Biochem. 254, 8083-8086 (1979).

1977 (1)

R. N. Fabricant, J. E. D. Larco, and G. J. Todaro, "Nerve growth factor receptors on human melanoma cells in culture," Proc. Nat. Acad. Sci. 74, 565-569 (1977).
[CrossRef] [PubMed]

1973 (1)

G. Frens, "Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions," Nature (London) Phys. Sci. 241, 20-22 (1973).
[PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Anal. Chem. (1)

T. A. Byassee, W. C. W. Chan, and S. Nie, "Probing single molecules in single living cells," Anal. Chem. 72, 5606-5611 (2000).
[CrossRef] [PubMed]

Annu. Rev. Biochem. (1)

G. Carpenter, "Receptors for epidermal growth factor and other polypeptide mitogens," Annu. Rev. Biochem. 56, 881-914 (1987).
[CrossRef] [PubMed]

Appl. Opt. (2)

Biophys. J. (2)

R. Brock, M. A. Hink, and T. M. Jovin, "Fluorescence correlation microscopy of cells in the presence of autofluorescence," Biophys. J. 75, 2547-2557 (1998).
[CrossRef] [PubMed]

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, "Selective cell targeting with light-absorbing microparticles and nanoparticles," Biophys. J. 84, 4023-4032 (2003).
[CrossRef] [PubMed]

Cancer Res. (1)

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

Chem. Phys. Lett. (2)

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, "Nanoengineering of optical resonances," Chem. Phys. Lett. 288, 243-247 (1998).
[CrossRef] [PubMed]

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, "The `lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal," Chem. Phys. Lett. 317, 517-523 (2000).
[CrossRef] [PubMed]

Colloid J. (1)

A. V. Alekseeva, V. A. Bogatyrev, B. N. Khlebtsov, A. G. Mel'nikov, L. A. Dykman, and N. G. Khlebtsov, "Gold nanorods: Synthesis and optical properties," Colloid J. 68, 661-678 (2006).
[CrossRef] [PubMed]

Curr. Anal. Chem. (1)

N. Calander, "Molecular detection and analysis by using surface plasmon resonances," Curr. Anal. Chem. 2, 203-211 (2006).
[CrossRef] [PubMed]

Curr. Opin. Biotechnol. (1)

C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, "Looking towards label-free biomolecular interaction analysis in a highthroughput format: a review of new surface plasmon resonance technologies," Curr. Opin. Biotechnol. 17, 400-405 (2006).
[CrossRef] [PubMed]

Cytomet. A (1)

J. M. Lerner, "Imaging spectrometer fundamentals for researchers in the biosciences--A tutorial," Cytomet. A 69A, 712-734 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

J. Biochem. (1)

M. M. Wrann and C. F. Fox, "Identification of epidermal growth factor receptors in a hyperproducing human epidermoid carcinoma cell line," J. Biochem. 254, 8083-8086 (1979).

J. Biomed. Opt. (2)

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. Jose-Yacaman, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, "Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in Vivo," J. Biomed. Opt. 12, 034007 (2007).
[CrossRef] [PubMed]

X. Gao, W. C. W. Chan, and S. Nie, "Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding," J. Biomed. Opt. 7, 532-537 (2002).
[CrossRef] [PubMed]

J. Cryst. Growth (1)

J. L. Burt, J. L. Elechiguerra, J. Reyes-Gasga, J. Martin Montejano-Carrizales, and M. Jose-Yacaman, "Beyond archimedean solids: Star polyhedral gold nanocrystals," J. Cryst. Growth 285, 681-691 (2005).
[CrossRef]

J. Mod. Opt. (1)

B. Stout, J.-C. Auger, and J. Lafait, "A transfer matrix approach to local field calculations in multiple-scattering problems," J. Mod. Opt. 49, 2129-2152 (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

D. W. Mackowski, "Calculation of total cross sections of multiplesphere clusters," J. Opt. Soc. Am. 11, 2851-2861 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (2)

M. L. Sandrock and C. A. Foss, Jr., "Synthesis and linear optical properties of nanoscopic gold particle pair structures," J. Phys. Chem. B 103, 11398-11406 (1999).
[CrossRef] [PubMed]

M. L. Sandrock, C. D. Pibel, F. M. Geiger, and C. A. Foss, Jr., "Synthesis and Second-Harmonic Generation studies of Noncentrosymmetric Gold Nanostructures," J. Phys. Chem. B 103, 2668-2673 (1999).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (3)

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength," J. Quant. Spectrosc. Radiat. Transf. 106, 546-557 (2007).
[CrossRef]

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, "Capabilities andLimitations of a Current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers," J. Quant. Spectrosc. Radiat. Transf. 60, 309-324 (1998).
[CrossRef] [PubMed]

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, "T-matrix computations of light scattering by nonspherical particles: a review," J. Quant. Spectrosc. Radiat. Transf. 55, 535-575 (1996).
[CrossRef]

Langmuir (2)

K. R. Brown and M. J. Natan, "Hydroxylamine seeding of colloidal au nanoparticles in solution and on surfaces," Langmuir 14, 726-728 (1998).
[CrossRef] [PubMed]

R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry, "Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview," Langmuir 21, 10644-10654 (2005).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129. (2000).
[CrossRef] [PubMed]

Methods (1)

G. I. Mashanov, D. Tacon, A. E. Knight, M. Peckham, and J. E. Molloy, "Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy," Methods 29, 142-152 (2003).
[CrossRef] [PubMed]

Methods Mol. Bio. (1)

C. Oliver, "Conjugation of colloidal gold to proteins," Methods Mol. Bio. 115, 331-334 (1999).
[PubMed]

Mol. Biol. Cell (1)

P. Burke, K. Schooler, and H. S. Wiley, "Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking," Mol. Biol. Cell 12, 1897-1910 (2001).

Nano Lett. (9)

S. Kumar, N. Harrison, R. Richards-Kortum, and K. Sokolov, "Plasmonic nanosensors for imaging intracellular biomarkers in live cells," Nano Lett. 7, 1338-1343 (2007).
[CrossRef] [PubMed]

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents," Nano Lett. 5, 5 (2005).
[CrossRef] [PubMed]

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, "Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect," Nano Lett. 5, 119-124 (2005).
[CrossRef] [PubMed]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, "Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods," Nano Lett. 7, 941-945 (2007).
[CrossRef] [PubMed]

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon resonances of a gold nanostar," Nano Lett. 7, 729-732 (2007).
[CrossRef] [PubMed]

C. L. Nehl, H. Liao, and J. H. Hafner, "Optical properties of star-shaped gold nanoparticles," Nano Lett. 6, 683-688 (2006).
[CrossRef] [PubMed]

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, "Composite plasmon resonant nanowires," Nano Lett. 2, 465-469 (2002).
[CrossRef]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer," Nano Lett. 5, 829-834 (2005).
[CrossRef] [PubMed]

Nano Letters (1)

C. Soennichsen and A. P. Alivisatos, "Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy," Nano Letters 5, 301-304 (2005).
[CrossRef]

Nanotechnology (1)

T. A. Larson, J. Bankson, J. Aaron, and K. Sokolov, "Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells," Nanotechnology 18, 325101 (2007).
[CrossRef] [PubMed]

Nat. Biotechnol. (3)

D. S. Lidke, P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman, and T. M. Jovin, "Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction," Nat. Biotechnol. 22, 198-203 (2004).
[CrossRef] [PubMed]

P. Alivisatos, "The use of nanocrystals in biological detection," Nat. Biotechnol. 22, 47-52 (2004).
[CrossRef] [PubMed]

C. Soennichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005).
[CrossRef] [PubMed]

Nat. Med. (1)

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nat. Med. 7, 1245-1248 (2001).
[CrossRef] [PubMed]

Nat. Protocols (1)

S. Kumar, J.S. Aaron, K.V. Sokolov, "Directional conjugation of antibodies to nanoparticles for Ssynthesis of multiplexed optical contrast agents with both delivery and targeting moieties," Nat. Protocols (2008) (in press).
[CrossRef]

Nature (1)

L. Cai, N. Friedman, and X. S. Xie, "Stochastic protein expression in individual cells at the single molecule level," Nature 440, 358-362 (2006).
[CrossRef] [PubMed]

Nature (London) Phys. Sci. (1)

G. Frens, "Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions," Nature (London) Phys. Sci. 241, 20-22 (1973).
[PubMed]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef] [PubMed]

Opt. Eng. (1)

P. M. F. Nielsen, F. N. Reinholz, and P. G. Charette, "Polarization-sensitive scanned fiber confocal microscope," Opt. Eng. 35, 3084-3091 (1996).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Proc. Nat. Acad. Sci. (3)

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," Proc. Nat. Acad. Sci. 102, 15752-15756 (2005).
[CrossRef] [PubMed]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, "Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance," Proc. Nat. Acad. Sci. 100, 13549-13554 (2003).
[CrossRef] [PubMed]

R. N. Fabricant, J. E. D. Larco, and G. J. Todaro, "Nerve growth factor receptors on human melanoma cells in culture," Proc. Nat. Acad. Sci. 74, 565-569 (1977).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. (2)

T. Basche, S. Nie, and J. M. Fernandez, "Single molecules," Proc. Natl. Acad. Sci. 98, 10527-10528 (2001).
[CrossRef] [PubMed]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, "Single metallic nanoparticle imaging for protein detection in cells," Proc. Natl. Acad. Sci. 100, 11350-11355 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (2)

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," Proc. Natl. Acad. Sci. USA 97, 996-1001 (2000).
[CrossRef] [PubMed]

M. Lakadamyali, M. J. Rust, H. P. Babcock, and X. Zhuang, "Visualizing infection of individual influenza viruses," Proc. Natl. Acad. Sci. USA 100, 9280-9285 (2003).
[CrossRef] [PubMed]

Proc. R. Soc. London (1)

D. W. Mackowski., "Analysis of radiative scattering for multiple sphere configurations," Proc. R. Soc. London 433, 599-614 (1991).
[CrossRef] [PubMed]

Science (2)

A. Vieira, C. Lamaze, and S. L. Schmid, "Control of EGF receptor signaling by clathrin-mediated endocytosis," Science 274, 2086-2089 (1996).
[CrossRef] [PubMed]

W. C. Chan and S. Nie, "Quantum dot bioconjugates for ultrasensitive nonisotopic detection," Science 281, 2016-2018. (1998).
[CrossRef] [PubMed]

Traffic (1)

D. Axelrod, "Total internal reflection fluorescence microscopy in cell biology," Traffic 2, 764-774 (2001).
[CrossRef] [PubMed]

Other (6)

C. J. Barnes and R. Kumar, "Biology of the epidermal growth factor receptor family," in Molecular Targeting and Transduction, (Cancer Treatment and Research, 2004) Vol. 119, pp.1-13.
[CrossRef] [PubMed]

U. Kreibig, "Properties of Small Particles in Insulating Matrices," in Contribution of Clusters Physics to Material Science and Technology From Isolated Clusters to Aggregated Materials, J. Davenas, and P. M. Rabette, eds. (Klewer Academic Publishers, New York, NY, 1986), pp. 373-423.

P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, "Release on the refractive index of ordinary water substance as a function of wavelength, temperature and pressure," in Technical Report (The International Association for the Properties of Water and Steam (IAPWS), 1997).

B. T. Draine and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A 11, 1491- (1994).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Field polarization and polarization charge distributions in plasmon resonant nanoparticles," New J. Phys. 2, Article No. 27 (2000).
[CrossRef]

C. S. Thaxton and C. A. Mirkin, "DNA-gold-nanoparticle conjugates," IEE Proc.: Nanobiotechnol. 288-307 (2004).

Supplementary Material (1)

» Media 1: AVI (432 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Characterization of spherical and stellated gold nanoparticles. In (A) and (B), four representative SEM images (taken with Zeiss Supra 40 VP at 200K-400K magnification) are shown which reveal the shape differences between spherical and stellated nanoparticles, respectively. (C) and (D) show darkfield images of spherical and stellated particles, respectively, which were obtained under different illumination/collection conditions. Note that the numbered particles in the darkfield images correspond to numbered particles in the SEM images. Top images are acquired with unpolarized darkfield illumination. Middle images were taken with horizontally polarized illumination, and detection of scattered light with parallel orientation of the analyzing polarizer (parallel polarization). Bottom images show the scattering with polarization perpendicular relative to the illumination (perpendicular polarization). Note that most of spherical particles are not visible under perpendicular polarization. Images with parallel and perpendicular orientation of polarizer and analyzer were acquired using acquisition conditions with 2.5× and 15× enhanced sensitivity, respectively, relative to images without polarizers. Scale bar is 5µm.

Fig. 2.
Fig. 2.

Representative scattering spectra of individual spherical (blue) and stellated (red) nanoparticles obtained using the PARISS hyperspectral imaging system (Lightform, Inc.) coupled to the Leica DM6000. The blue spectrum corresponds to the spherical particle number 4 shown in (A) and the red spectrum corresponds to the stellated particle number 2 shown in (B). Analysis of the scattering spectra from N>100 particles of each type showed that the average peak wavelength for spheres is 548 ± 16 nm, and 630 ± 33 nm for stellated particles.

Fig. 3.
Fig. 3.

(A) Computer-generated images showing the geometries that were used for electrodynamic simulations: a 75nm diameter, 1.05 aspect ratio spheroidal particle (left); an aggregate of 8 spherical particles with 65 nm diameter and a center-to center separation of 1.15 times the particle diameter (middle); and a stellated particle (right), which was designed to closely approximate particle number 2 shown in Fig. 1(b). In each case, incident illumination propagates in the z-direction (into the page). In (B), simulated scattering cross sections are shown for scattered polarization parallel (left) and perpendicular (right) to that of the incident light. Spheroidal particles and aggregates of spherical particles (blue and green curves, respectively) were simulated using a new implementation of T-Matrix theory, while stellated particles (red curves) were analyzed using publicly available discrete-dipole approximation (DDA) algorithms. Parallel spectra (B, left) are each normalized to a maximum of one. Spectra in (B), right, show the intensity of light scattering in the perpendicular direction relative to the normalized parallel scattering cross-section. Therefore, the perpendicular components (B, right) demonstrate the relative depolarization ability of each particle type/aggregate. Note that single stellated particles can depolarize up to ca. 15% of the incoming linear polarized illumination, while single spheroidal particles only depolarize ca 1%. The 8-particle aggregate depolarizes up to 7% of the incoming illumination.

Fig. 4.
Fig. 4.

Darkfield imaging and hyperspectral microscopy of live cells labeled with anti-EGFR spherical and with stellated gold nanoparticles. In (A), darkfield images of A431 cells labeled with spherical (top row) and stellated (bottom row) particles are shown. Labeled cells were mixed in a 1:1 ratio with unlabeled cells which appear blue due to intrinsic scattering from cells. Darkfield images of the labeled/unlabelled cell mixtures were obtained with no polarizers (left), and parallel (middle) and perpendicular (right) orientation of a linear polarized illumination and an analyzing polarizer. To optimize the SNR in each image, parallel and perpendicular images were acquired using acquisition conditions with 14× and 30× increased sensitivity, respectively, relative to non-polarized images. Imaging in cross-polarization resulted in a 3 to 4-fold increase in the signal ratio between labeled to unlabeled cells as compared to the parallel orientation. Therefore, unlabeled cells are not visible in the images shown for the cross-polarization (A, right). Scale bar is 20µm. Part (B) shows scattering spectra of cells labeled with spherical (left) and stellated (right) nanoparticles. The spectra were obtained in parallel (blue) and perpendicular (red) orientation of polarizers in illumination and detection paths using a PARISS hyperspectral imaging system (Lightform, Inc.) coupled to the Leica DM6000 microscope. The curves are normalized to one at the maximum of the cross-polarized (red) spectra to facilitate comparison of the spectral profiles. Note the large relative decrease in scattering in the blue spectral region when detection was carried out in cross-polarization mode, as well as a large red shift in scattering maximum of labeled cells as compared to isolated particles.

Fig. 5.
Fig. 5.

Video clip showing movement of individual stellated nanoparticles bound to EGFR molecules in live SiHa cells. Note the presence of unbound particles moving quickly through the field of view. Bound particles show slower, directional movement towards the cell nucleus, consistent with receptor-mediated endocytosis.[Media 1]

Fig. 6.
Fig. 6.

Imaging of single stellated particle trafficking inside live SiHa cells. Single particles bound to EGFR molecules on SiHa cells were imaged at 10 second intervals under cross-polarized, transmitted darkfield mode. These images were overlaid with a phase contrast image taken of the same field of view. There is 10 minute interval between images shown in (A) and (B). White lines indicate trafficking paths of single stellated nanoparticles which are attached to EGFR molecules within the live SiHa cell. Note an unbound particle in (A) which quickly moves from the field of view and is therefore not present in (B). Scale bar is 5µm. Scattering spectrum of an EGFR-bound particle (indicated by an arrow) is shown in (C). The spectrum was acquired using the PARISS hyperspectral imaging system coupled to the Leica DM6000. The plasmon resonance wavelength of this particle is consistent with the spectral profile measured for isolated stellated particles (see Fig. 2).

Metrics