Abstract

We demonstrate a direct observation of the coherent noise spectral hole in a saturated quantum dash amplifier. Its width 500-600 GHz is determined by the response time and is responsible for high speed regeneration properties.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. Shtaif and G. Eisenstein, "Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit," IEEE J. Quantum Electron. 32, 1801-1809 (1996).
    [CrossRef]
  2. M. Shtaif and G. Eisenstein, "Noise properties of nonlinear semiconductor optical amplifiers," Opt. Lett. 21, 1851-1853 (1996).
    [CrossRef] [PubMed]
  3. A. Bilenca and G. Eisenstein, "On noise properties of linear and nonlinear quantum dot semiconductor optical amplifiers: The impact of inhomogeneously broadened gain and fast carrier dynamics," IEEE J. Quantum Electron. 40, 690-702 (2004).
    [CrossRef]
  4. D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, "Gain and noise saturation of wide band InAs/InP quantum dash optical amplifiers: Model and Experiments," IEEE J. Sel. Top. Quantum Electron. 11, 1015-1025 (2005).
    [CrossRef]
  5. Y. Nambu, A.  Tomita, H.  Saito, and K.  Nishi, "Effects of spectral broadening and cross relaxation on the gain saturation characteristics of quantum dot laser amplifiers," Jpn. J. Appl. Phys. 38, 5087-5095 (1999).
    [CrossRef]
  6. A. P. Bogatov, P. G. Eliseev, and B. N. Sverdlov, "Anomalous interaction of spectral modes in a semiconductor laser," IEEE J. Quantum Electron. 11, 510-515 (1975).
    [CrossRef]
  7. M. van der Pole, J. Mørk, A. Somers, A. Forchel, and J. P. Reithmaier, "Ultrafast gain and index dynamics of quantum dash structures emitting at 1.55 µm," Appl. Phys. Lett. 89, 081102 (2006).
    [CrossRef]
  8. H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, "On the nature of quantum dash structures," J. Appl. Phys. 95, 6103-6111 (2004).
    [CrossRef]
  9. J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk and B. Tromborg, "InP based lasers and optical amplifiers with wire-/dot-like active regions" J. Phys. D 38, 2088-2102 (2005).
    [CrossRef]
  10. J. Mark, N. Tessler, G. Eisenstein, J. Mork, "Broad band femtosecond pump-probe set-up operating at 1300 and 1550 nm," Appl. Phys. Lett. 64, 1899-1901 (1994).
    [CrossRef]

2006 (1)

M. van der Pole, J. Mørk, A. Somers, A. Forchel, and J. P. Reithmaier, "Ultrafast gain and index dynamics of quantum dash structures emitting at 1.55 µm," Appl. Phys. Lett. 89, 081102 (2006).
[CrossRef]

2005 (2)

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk and B. Tromborg, "InP based lasers and optical amplifiers with wire-/dot-like active regions" J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, "Gain and noise saturation of wide band InAs/InP quantum dash optical amplifiers: Model and Experiments," IEEE J. Sel. Top. Quantum Electron. 11, 1015-1025 (2005).
[CrossRef]

2004 (2)

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, "On the nature of quantum dash structures," J. Appl. Phys. 95, 6103-6111 (2004).
[CrossRef]

A. Bilenca and G. Eisenstein, "On noise properties of linear and nonlinear quantum dot semiconductor optical amplifiers: The impact of inhomogeneously broadened gain and fast carrier dynamics," IEEE J. Quantum Electron. 40, 690-702 (2004).
[CrossRef]

1999 (1)

Y. Nambu, A.  Tomita, H.  Saito, and K.  Nishi, "Effects of spectral broadening and cross relaxation on the gain saturation characteristics of quantum dot laser amplifiers," Jpn. J. Appl. Phys. 38, 5087-5095 (1999).
[CrossRef]

1996 (2)

M. Shtaif and G. Eisenstein, "Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit," IEEE J. Quantum Electron. 32, 1801-1809 (1996).
[CrossRef]

M. Shtaif and G. Eisenstein, "Noise properties of nonlinear semiconductor optical amplifiers," Opt. Lett. 21, 1851-1853 (1996).
[CrossRef] [PubMed]

1994 (1)

J. Mark, N. Tessler, G. Eisenstein, J. Mork, "Broad band femtosecond pump-probe set-up operating at 1300 and 1550 nm," Appl. Phys. Lett. 64, 1899-1901 (1994).
[CrossRef]

1975 (1)

A. P. Bogatov, P. G. Eliseev, and B. N. Sverdlov, "Anomalous interaction of spectral modes in a semiconductor laser," IEEE J. Quantum Electron. 11, 510-515 (1975).
[CrossRef]

Appl. Phys. Lett. (2)

M. van der Pole, J. Mørk, A. Somers, A. Forchel, and J. P. Reithmaier, "Ultrafast gain and index dynamics of quantum dash structures emitting at 1.55 µm," Appl. Phys. Lett. 89, 081102 (2006).
[CrossRef]

J. Mark, N. Tessler, G. Eisenstein, J. Mork, "Broad band femtosecond pump-probe set-up operating at 1300 and 1550 nm," Appl. Phys. Lett. 64, 1899-1901 (1994).
[CrossRef]

IEEE J. Quantum Electron. (3)

A. P. Bogatov, P. G. Eliseev, and B. N. Sverdlov, "Anomalous interaction of spectral modes in a semiconductor laser," IEEE J. Quantum Electron. 11, 510-515 (1975).
[CrossRef]

M. Shtaif and G. Eisenstein, "Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit," IEEE J. Quantum Electron. 32, 1801-1809 (1996).
[CrossRef]

A. Bilenca and G. Eisenstein, "On noise properties of linear and nonlinear quantum dot semiconductor optical amplifiers: The impact of inhomogeneously broadened gain and fast carrier dynamics," IEEE J. Quantum Electron. 40, 690-702 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, "Gain and noise saturation of wide band InAs/InP quantum dash optical amplifiers: Model and Experiments," IEEE J. Sel. Top. Quantum Electron. 11, 1015-1025 (2005).
[CrossRef]

J. Appl. Phys. (1)

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, "On the nature of quantum dash structures," J. Appl. Phys. 95, 6103-6111 (2004).
[CrossRef]

J. Phys. D (1)

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk and B. Tromborg, "InP based lasers and optical amplifiers with wire-/dot-like active regions" J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Nambu, A.  Tomita, H.  Saito, and K.  Nishi, "Effects of spectral broadening and cross relaxation on the gain saturation characteristics of quantum dot laser amplifiers," Jpn. J. Appl. Phys. 38, 5087-5095 (1999).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Spontaneous emission spectra for various bias levels.

Fig. 2.
Fig. 2.

(a) Measured spectral hole, (b) Calculated spectral hole. Inset shows magnification of the hole. The red line signifies the spectral placing of the pump.

Fig. 3.
Fig. 3.

Spectral hole for various bias levels. The width of the hole shows an equivalent life time of ~1/1.5ps.

Fig. 4.
Fig. 4.

Dependence of the hole on pump power.

Fig. 5.
Fig. 5.

Dependence of the hole on temperature.

Fig. 6.
Fig. 6.

Gain spectra measurement using static pump probe setup. The red line signifies the spectral placing of the pump.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

z ( E 1 ( z , ω ) E 1 * ( z , ω ) ) = ( A 1 ( z , ω ) A 2 ( z , ω ) A 3 ( z , ω ) A 4 ( z , ω ) ) ( E 1 ( z , ω ) E 1 * ( z , ω ) ) + ( n 0 ( z , ω ) n 0 * ( z , ω ) )
A 1 ( z , ω ) = ( j = 1 M k = 1 N C 1 jk ( ω ) g jk , 0 peak α int ) j = 1 M k = 1 N C 2 jk ( ω ) g jk , 0 peak E 0 2 1 + C 3 jk E 0 2 i ω τ jk , 0 eff
A 2 ( z , ω ) = j = 1 M k = 1 N C 4 jk ( ω ) g jk , 0 peak E 0 2 1 + C 5 jk E 0 2 i ω τ jk , 0 eff
A 3 ( z , ω ) = A 2 * ( z , ω ) ; A 4 ( z , ω ) = A 1 * ( z , ω ) .

Metrics