Abstract

The generation of high-power and stable ultra-short pulses from a passively mode-locked purely normal dispersion fiber laser is reported using the unique combination of a photonic crystal fiber featuring singlepolarization, single-mode, and low nonlinearity with a high modulation depth semiconductor saturable absorber mirror. The environmentally-stable, self-starting fiber laser generates 1.6 W of average power at a repetition rate of 63 MHz, corresponding to a pulse energy of 25 nJ. The emitted pulses are positively chirped with a pulse duration of 3.7 ps. They are compressible down to a near transform-limited duration of 750 fs. Numerical simulations are in good agreement with the experimental results.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149-151 (1994).
    [CrossRef]
  2. K. Tamura, E. P. Ippen, and H. A. Haus, "Pulse dynamics in stretched-pulse fiber lasers," Appl. Phys. Lett. 67, 158-160 (1995).
    [CrossRef]
  3. F. Ö. Ilday, J. Buckley, W. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 91, 213902 (2004).
    [CrossRef]
  4. R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893-899 (2004).
    [CrossRef]
  5. L. M. Zhao, D. Y. Tang, and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1788-1790 (2006).
    [CrossRef] [PubMed]
  6. A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal dispersion femtosecond fiber laser," Opt. Express 14, 10095-10100 (2006).
    [CrossRef] [PubMed]
  7. L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, "Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser," Opt. Lett. 32, 1806-1808 (2007).
    [CrossRef] [PubMed]
  8. A. Chong, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20nJ," Opt. Lett. 32, 2408-2410 (2007).
    [CrossRef] [PubMed]
  9. B. Ortaç, J. Limpert, and A. Tünnermann, "High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime," Opt. Lett. 32, 2149-2151 (2007).
    [CrossRef] [PubMed]
  10. C. Lecaplain, C. Chédot, A. Hideur, B. Ortaç, and J. Limpert, "High-power all-normal dispersion femtosecond pulse generation from a Yb-doped large-mode-area microstructure fiber laser," Opt. Lett. 32, 2738-2749 (2007).
    [CrossRef] [PubMed]
  11. B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and A. Hideur, "High-energy femtosecond Yb-doped dispersion compensation free fiber laser," Opt. Express 15, 10725-10732 (2007).
    [CrossRef] [PubMed]
  12. M. E. Fermann, L. M. Yang, M. L. Stock, and M. J. Andrejco, "Environmentally stable Kerr-type mode-locked erbium fiber laser producing 360-fs pulses," Opt. Lett. 19, 43-45 (1994).
    [CrossRef] [PubMed]
  13. M. E. Fermann, D. Harter, J. D. Minelly, and G. G. Vienne, "Cladding-pumped passively mode-locked fiber laser generating femtosecond and picosecond pulses," Opt. Lett. 21, 967-969 (1996).
    [CrossRef] [PubMed]
  14. E. A. De Souza, C. E. Soccolich, W. Pleibel, R. H. Stolen, J. R. Simpson, and D. J. DiGiovanni, "Saturable absorber mode locked polarisation maintaining erbium-doped fibre laser," Electron. Lett. 29, 447-449 (1993).
    [CrossRef]
  15. J. W. Nicholson, and M. Andrejco, "A polarization maintaining, dispersion managed, femtosecond figure-eight laser," Opt. Express 14, 8160-8167 (2006).
    [CrossRef] [PubMed]
  16. I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, "Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers," CLEO, Baltimore, paper CThG1, May 2005.
  17. C. K. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, "Self-starting self-similar all-polarization maintaining Yb-doped fiber laser," Opt. Express 13, 9346-9351 (2005).
    [CrossRef] [PubMed]
  18. B. Ortaç, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, "Experimental and numerical study of pulse dynamics in positive net-cavity dispersion mode-locked Yb-doped fiber lasers," Opt. Express 15, 15595-15602 (2007).
    [CrossRef]
  19. T. F. Carruthers, I. N. Duling, and M. L. Dennis, "Active-passive modelocking in a single-polarisation erbium fibre laser," Electron. Lett. 30, 1051-1053 (1994).
    [CrossRef]
  20. D. J. Jones, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Diode-pumped environmentally stable stretched-pulse fiber laser, " IEEE J. Sel. Top. Quantum Electron. 3, 1076-1079 (1997).
    [CrossRef]
  21. T. Schreiber, H. Schultz, O. Schmidt, F. Röser, J. Limpert, and A. Tünnermann, "Stress-induced birefringence in large-mode-area micro-structured optical fibers, " Opt. Express 13, 3637-3646 (2005)
    [CrossRef] [PubMed]
  22. T. Schreiber, F. Röser, O. Schmidt, J. Limpert, R. Iliew, F. Lederer, A. Petersson, C. Jacobsen, K. P. Hansen, J. Broeng, and A. Tünnermann, "Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity," Opt. Express 13, 7621-7630 (2005).
    [CrossRef] [PubMed]
  23. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, "On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulation," Opt. Express 15, 8252-8262 (2007).
    [CrossRef] [PubMed]

2007 (7)

L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, "Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser," Opt. Lett. 32, 1806-1808 (2007).
[CrossRef] [PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20nJ," Opt. Lett. 32, 2408-2410 (2007).
[CrossRef] [PubMed]

B. Ortaç, J. Limpert, and A. Tünnermann, "High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime," Opt. Lett. 32, 2149-2151 (2007).
[CrossRef] [PubMed]

C. Lecaplain, C. Chédot, A. Hideur, B. Ortaç, and J. Limpert, "High-power all-normal dispersion femtosecond pulse generation from a Yb-doped large-mode-area microstructure fiber laser," Opt. Lett. 32, 2738-2749 (2007).
[CrossRef] [PubMed]

B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and A. Hideur, "High-energy femtosecond Yb-doped dispersion compensation free fiber laser," Opt. Express 15, 10725-10732 (2007).
[CrossRef] [PubMed]

B. Ortaç, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, "Experimental and numerical study of pulse dynamics in positive net-cavity dispersion mode-locked Yb-doped fiber lasers," Opt. Express 15, 15595-15602 (2007).
[CrossRef]

T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, "On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulation," Opt. Express 15, 8252-8262 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (3)

2004 (2)

F. Ö. Ilday, J. Buckley, W. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 91, 213902 (2004).
[CrossRef]

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

1997 (1)

D. J. Jones, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Diode-pumped environmentally stable stretched-pulse fiber laser, " IEEE J. Sel. Top. Quantum Electron. 3, 1076-1079 (1997).
[CrossRef]

1996 (1)

1995 (1)

K. Tamura, E. P. Ippen, and H. A. Haus, "Pulse dynamics in stretched-pulse fiber lasers," Appl. Phys. Lett. 67, 158-160 (1995).
[CrossRef]

1994 (3)

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149-151 (1994).
[CrossRef]

M. E. Fermann, L. M. Yang, M. L. Stock, and M. J. Andrejco, "Environmentally stable Kerr-type mode-locked erbium fiber laser producing 360-fs pulses," Opt. Lett. 19, 43-45 (1994).
[CrossRef] [PubMed]

T. F. Carruthers, I. N. Duling, and M. L. Dennis, "Active-passive modelocking in a single-polarisation erbium fibre laser," Electron. Lett. 30, 1051-1053 (1994).
[CrossRef]

1993 (1)

E. A. De Souza, C. E. Soccolich, W. Pleibel, R. H. Stolen, J. R. Simpson, and D. J. DiGiovanni, "Saturable absorber mode locked polarisation maintaining erbium-doped fibre laser," Electron. Lett. 29, 447-449 (1993).
[CrossRef]

Appl. Phys. Lett. (2)

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149-151 (1994).
[CrossRef]

K. Tamura, E. P. Ippen, and H. A. Haus, "Pulse dynamics in stretched-pulse fiber lasers," Appl. Phys. Lett. 67, 158-160 (1995).
[CrossRef]

Electron. Lett. (2)

E. A. De Souza, C. E. Soccolich, W. Pleibel, R. H. Stolen, J. R. Simpson, and D. J. DiGiovanni, "Saturable absorber mode locked polarisation maintaining erbium-doped fibre laser," Electron. Lett. 29, 447-449 (1993).
[CrossRef]

T. F. Carruthers, I. N. Duling, and M. L. Dennis, "Active-passive modelocking in a single-polarisation erbium fibre laser," Electron. Lett. 30, 1051-1053 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. J. Jones, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Diode-pumped environmentally stable stretched-pulse fiber laser, " IEEE J. Sel. Top. Quantum Electron. 3, 1076-1079 (1997).
[CrossRef]

Opt. Express (8)

T. Schreiber, H. Schultz, O. Schmidt, F. Röser, J. Limpert, and A. Tünnermann, "Stress-induced birefringence in large-mode-area micro-structured optical fibers, " Opt. Express 13, 3637-3646 (2005)
[CrossRef] [PubMed]

T. Schreiber, F. Röser, O. Schmidt, J. Limpert, R. Iliew, F. Lederer, A. Petersson, C. Jacobsen, K. P. Hansen, J. Broeng, and A. Tünnermann, "Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity," Opt. Express 13, 7621-7630 (2005).
[CrossRef] [PubMed]

T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, "On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulation," Opt. Express 15, 8252-8262 (2007).
[CrossRef] [PubMed]

J. W. Nicholson, and M. Andrejco, "A polarization maintaining, dispersion managed, femtosecond figure-eight laser," Opt. Express 14, 8160-8167 (2006).
[CrossRef] [PubMed]

B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and A. Hideur, "High-energy femtosecond Yb-doped dispersion compensation free fiber laser," Opt. Express 15, 10725-10732 (2007).
[CrossRef] [PubMed]

A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal dispersion femtosecond fiber laser," Opt. Express 14, 10095-10100 (2006).
[CrossRef] [PubMed]

C. K. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, "Self-starting self-similar all-polarization maintaining Yb-doped fiber laser," Opt. Express 13, 9346-9351 (2005).
[CrossRef] [PubMed]

B. Ortaç, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, "Experimental and numerical study of pulse dynamics in positive net-cavity dispersion mode-locked Yb-doped fiber lasers," Opt. Express 15, 15595-15602 (2007).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. Lett. (1)

F. Ö. Ilday, J. Buckley, W. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 91, 213902 (2004).
[CrossRef]

Other (1)

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, "Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers," CLEO, Baltimore, paper CThG1, May 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic representation of the mode-locked Yb-doped single-polarization fiber laser. L: Lens, M1 and M2: Dichroic mirrors, M3: High reflection mirror, WP: Wave plate and SAM: Saturable absorber mirror.

Fig. 2.
Fig. 2.

Cross section of a single-polarization fiber with a 40 µm core diameter.

Fig. 3.
Fig. 3.

Measured optical spectrum from fiber oscillator (solid line) compared to spectrum at the output from numerical simulation (dashed line).

Fig. 4.
Fig. 4.

Autocorrelation trace of chirped pulses observed directly at the laser output.

Fig. 5.
Fig. 5.

Autocorrelation trace of the dechirped pulses (solid line) compared to the AC of transform-limited pulses (dashed line).

Fig. 6.
Fig. 6.

Simulation of the intra-cavity pulse evolution of dispersion compensation free modelocked fiber laser in the temporal and spectral domain. OC: Output coupling.

Metrics