Abstract

This study demonstrates a novel tunable grating based on a stressed liquid crystal (SLC) film. This device can be modulated by shearing a length or applying an AC voltage to tune the intensity and polarization of diffracted beams. The device capable of tuning the intensity and/or polarization of diffracted beams is essential to various optical systems. Thus, SLC gratings have potential for practical applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. C. Jones, and R. A. Pelcovits, "Liquid-crystal diffraction gratings using polarization holography alignment techniques," J. Appl. Phys. 98, 123102 (2005).
    [CrossRef] [PubMed]
  2. J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, "Field controlled light scattering from nematic microdroplets," Appl. Phys. Lett. 48, 269-271 (1986).
    [CrossRef] [PubMed]
  3. J. L. West, G. Zhang, and A. Glushchenko, "Stressed liquid crystals for electrically controlled fast shift of phase retardation," SID 03 Digest,  55, 1, 1469-1471 (2003).
    [CrossRef] [PubMed]
  4. J. West, K. Zhang, M. Zhang, T. Aoki, and A. Glushchenko. "Stressed liquid crystals," Proc. SPIE 5741, 10 (2005).
    [PubMed]
  5. R. L. Sutherland, V. P. Tondiglia, and L. V. Natarajan, "Electrically switchable volume gratings in polymer-dispersed liquid crystals," Appl. Phys. Lett. 64, 1074-1076 (1994).
    [CrossRef] [PubMed]
  6. Y. Q. Lu, F. Du, and S. T. Wu, "Polarization switch using thick holographic polymer-dispersed liquid crystal grating," J. Appl. Phys. 95, 810-815 (2004).
    [CrossRef] [PubMed]
  7. J. L. West, G. Zhang, A. Glushchenko, and Y. Reznikov, "Fast birefringent mode stressed liquid crystal," Appl. Phys Lett. 86, 031111 (2005).
    [CrossRef] [PubMed]
  8. Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu and S. T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal, " Opt. Express 12, 6377-6384 (2004).
    [CrossRef] [PubMed]
  9. Y. H. Wu, Y. H. Lin, H. Ren, X. Nie, J. H. Lee, and S. T. Wu, "Axially-symmetric sheared polymer network liquid crystals," Opt. Express 13, 4638-4644 (2005).
    [CrossRef] [PubMed]
  10. Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, "Fast-response and scattering-free polymer network liquid crystals for infrared light modulators," Appl. Phys. Lett. 84, 1233-1235 (2004).
    [CrossRef] [PubMed]

2005 (4)

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. C. Jones, and R. A. Pelcovits, "Liquid-crystal diffraction gratings using polarization holography alignment techniques," J. Appl. Phys. 98, 123102 (2005).
[CrossRef] [PubMed]

J. West, K. Zhang, M. Zhang, T. Aoki, and A. Glushchenko. "Stressed liquid crystals," Proc. SPIE 5741, 10 (2005).
[PubMed]

J. L. West, G. Zhang, A. Glushchenko, and Y. Reznikov, "Fast birefringent mode stressed liquid crystal," Appl. Phys Lett. 86, 031111 (2005).
[CrossRef] [PubMed]

Y. H. Wu, Y. H. Lin, H. Ren, X. Nie, J. H. Lee, and S. T. Wu, "Axially-symmetric sheared polymer network liquid crystals," Opt. Express 13, 4638-4644 (2005).
[CrossRef] [PubMed]

2004 (3)

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu and S. T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal, " Opt. Express 12, 6377-6384 (2004).
[CrossRef] [PubMed]

Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, "Fast-response and scattering-free polymer network liquid crystals for infrared light modulators," Appl. Phys. Lett. 84, 1233-1235 (2004).
[CrossRef] [PubMed]

Y. Q. Lu, F. Du, and S. T. Wu, "Polarization switch using thick holographic polymer-dispersed liquid crystal grating," J. Appl. Phys. 95, 810-815 (2004).
[CrossRef] [PubMed]

2003 (1)

J. L. West, G. Zhang, and A. Glushchenko, "Stressed liquid crystals for electrically controlled fast shift of phase retardation," SID 03 Digest,  55, 1, 1469-1471 (2003).
[CrossRef] [PubMed]

1994 (1)

R. L. Sutherland, V. P. Tondiglia, and L. V. Natarajan, "Electrically switchable volume gratings in polymer-dispersed liquid crystals," Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef] [PubMed]

1986 (1)

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, "Field controlled light scattering from nematic microdroplets," Appl. Phys. Lett. 48, 269-271 (1986).
[CrossRef] [PubMed]

Appl. Phys Lett. (1)

J. L. West, G. Zhang, A. Glushchenko, and Y. Reznikov, "Fast birefringent mode stressed liquid crystal," Appl. Phys Lett. 86, 031111 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

R. L. Sutherland, V. P. Tondiglia, and L. V. Natarajan, "Electrically switchable volume gratings in polymer-dispersed liquid crystals," Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef] [PubMed]

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, "Field controlled light scattering from nematic microdroplets," Appl. Phys. Lett. 48, 269-271 (1986).
[CrossRef] [PubMed]

Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, "Fast-response and scattering-free polymer network liquid crystals for infrared light modulators," Appl. Phys. Lett. 84, 1233-1235 (2004).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. C. Jones, and R. A. Pelcovits, "Liquid-crystal diffraction gratings using polarization holography alignment techniques," J. Appl. Phys. 98, 123102 (2005).
[CrossRef] [PubMed]

Y. Q. Lu, F. Du, and S. T. Wu, "Polarization switch using thick holographic polymer-dispersed liquid crystal grating," J. Appl. Phys. 95, 810-815 (2004).
[CrossRef] [PubMed]

Opt. Express (2)

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu and S. T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal, " Opt. Express 12, 6377-6384 (2004).
[CrossRef] [PubMed]

Y. H. Wu, Y. H. Lin, H. Ren, X. Nie, J. H. Lee, and S. T. Wu, "Axially-symmetric sheared polymer network liquid crystals," Opt. Express 13, 4638-4644 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. West, K. Zhang, M. Zhang, T. Aoki, and A. Glushchenko. "Stressed liquid crystals," Proc. SPIE 5741, 10 (2005).
[PubMed]

SID 03 Digest (1)

J. L. West, G. Zhang, and A. Glushchenko, "Stressed liquid crystals for electrically controlled fast shift of phase retardation," SID 03 Digest,  55, 1, 1469-1471 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a). Setup for UV-curing a sample through a grating mask; (b) schematic representation of the cell structure before (upper) and after (bottom) shearing.

Fig. 2.
Fig. 2.

Images of an SLC grating under a polarized optical microscope before and after shearing (50 µm); P, polarizer; A, analyzer.

Fig. 3.
Fig. 3.

Diffraction patterns of an SLC grating observed under, (a) P//A, (b) P⊥A. upper, before stress; bottom, after shearing with a Lshear =50µm; P, polarizer; A, analyzer.

Fig. 4.
Fig. 4.

Variation of the zero- and first-order diffraction intensities with shearing length Lshear under a cross-polarizer condition with the polarizer axis at an angle of ~45° relative to the grating vector.

Fig. 5.
Fig. 5.

Diffraction patterns of an SLC grating sheared with a length Lshear of (a) 0 µm, (b) 30 µm, and (c) 60 µm under the application of various AC voltages. Measurements were performed under the cross-polarizer condition with the polarizer axis at an angle of ~45° relative to the grating vector.

Fig. 6.
Fig. 6.

Variation of the first-order diffraction intensity with the application of AC voltages under a parallel-polarizer condition with the polarizer axis at an angle of ~45° relative to the grating vector.

Fig. 7.
Fig. 7.

Variation of the first-order beam with sample under stress. Measurements are performed with the polarizer axis parallel to the grating vector, and rotating the analyzer axis.

Metrics