Abstract

We demonstrated a laser-diode-pumped, electro-optically internal-Q-switched laser system radiating at 1.085 µm fabricated using a periodically poled Nd:MgO:LiNbO3 (Nd:MgO:PPLN) crystal. The Nd:MgO:PPLN is 17-mm long and has a 12-mm long, 13.6-µm period polarization-mode quasi-phase-matching (PM QPM) grating section functioning as the Q-switch of the laser system. When the Nd:MgO:PPLN Q-switch was driven by a 260-V voltage pulse train at 5 kHz, we obtained laser pulses of pulse energy >2.45 µJ and a pulse width of ~28 ns, corresponding to a laser peak power of ~88 W, from this internal-Q-switched laser system with 2% output coupling at an absorbed diode pump power of 0.61 W.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. Y. Fan, A. Cordova-Plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, "Nd:MgO:LiNbO3 spectroscopy and laser devices," J. Opt. Soc. Am. B 3, 140-148 (1986).
    [CrossRef]
  2. A. Cordova-Plaza, T. Y. Fan, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, "Nd:MgO:LiNbO3 continuous-wave laser pumped by a laser diode," Opt. Lett. 13, 209-211 (1988).
    [CrossRef] [PubMed]
  3. L. D. Shearer, M. Leduc, and J. Zachorowski, "CW laser oscillations and tuning characteristics of neodymium-doped lithium niobate crystals," IEEE J. Quantum Electron. QE-23, 1996-1998 (1987).
    [CrossRef]
  4. J. J. Zayhowski and C. Dill III, "Coupled-cavity electro-optically Q-switched Nd:YVO4 microchip lasers," Opt. Lett. 20, 716-718 (1995).
    [CrossRef] [PubMed]
  5. Y. X. Bai, N. Wu, J. Zhang, J. Q. Li, S. Q. Li, J. Xu, and P. Z. Deng, "Passively Q-switched Nd:YVO4 laser with a Cr4+:YAG crystal saturable absorber," Appl. Opt. 36, 2468-2472 (1997).
    [CrossRef] [PubMed]
  6. Y. H. Chen and Y. C. Huang, "Actively Q-switched Nd:YVO4 laser using an electro-optic PPLN crystal as a laser Q-switch," Opt. Lett. 28, 1460-1462 (2003).
    [CrossRef] [PubMed]
  7. M. Maiwald, S. Schwertfeger, R. Güther, B. Sumpf, K. Paschke, C. Dzionk, G. Erbert, and G. Tränkle, "600 mW optical output power at 488 nm by use of a high-power hybrid laser diode system and a periodically poled MgO:LiNbO3 bulk crystal," Opt. Lett. 31, 802-804 (2006).
    [CrossRef] [PubMed]
  8. H. Ishizuki, I. Shoji, and T. Taira, "Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature," Appl. Phys. Lett. 82, 4062-4064 (2003).
    [CrossRef]
  9. Y. H. Chen, Y. C. Huang, Y. Y. Lin, and Y. F. Chen, "Intracavity quasi-phase-matched elements for both low-voltage laser Q-switching and high-efficiency parametric generation," Appl. Phys. B 80, 889-896 (2005).
    [CrossRef]
  10. K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, "Electric-field poling in Mg-doped LiNbO3," J. Appl. Phys. 96, 6585-6590 (2004).
    [CrossRef]
  11. E. Lallier, J. P. Pocholle, M. Papuchon, M. P. De Micheli, M. J. Li, Qing He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, "Nd:MgO:LiNbO3 channel waveguide laser devices," IEEE J. Quantum Electron. 27, 618-625 (1991).
    [CrossRef]
  12. J. L. Blows, T. Omatus, J. Dawes, H. Pask, and M. Tateda, "Heat generation in Nd:YVO4 with and without laser action," IEEE Photonics Technol. Lett. 10, 1727-1729 (1998).
    [CrossRef]
  13. Z. D. Luo, Y. D. Huang, M. Montes, and D. Jaque, "Improving the performance of a neodymium aluminium borate microchip laser crystal by resonant pumping," Appl. Phys. Lett. 85, 715-717 (2004).
    [CrossRef]
  14. H. Y. Shen, H. Xu, Z. D. Zeng, W. X. Lin, R. F. Wu, and G. F. Xu, "Measurement of refractive indices and thermal refractive-index coefficients of LiNbO3 crystal doped with 5 mol. % MgO," Appl. Opt. 31, 6695-6697 (1992).
    [CrossRef] [PubMed]
  15. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
    [CrossRef]
  16. J. J. Degnan, "Theory of the optimally coupled Q-switched laser," IEEE J. Quantum Electron. 25, 214-220 (1989).
    [CrossRef]

2006 (1)

2005 (1)

Y. H. Chen, Y. C. Huang, Y. Y. Lin, and Y. F. Chen, "Intracavity quasi-phase-matched elements for both low-voltage laser Q-switching and high-efficiency parametric generation," Appl. Phys. B 80, 889-896 (2005).
[CrossRef]

2004 (2)

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, "Electric-field poling in Mg-doped LiNbO3," J. Appl. Phys. 96, 6585-6590 (2004).
[CrossRef]

Z. D. Luo, Y. D. Huang, M. Montes, and D. Jaque, "Improving the performance of a neodymium aluminium borate microchip laser crystal by resonant pumping," Appl. Phys. Lett. 85, 715-717 (2004).
[CrossRef]

2003 (2)

H. Ishizuki, I. Shoji, and T. Taira, "Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature," Appl. Phys. Lett. 82, 4062-4064 (2003).
[CrossRef]

Y. H. Chen and Y. C. Huang, "Actively Q-switched Nd:YVO4 laser using an electro-optic PPLN crystal as a laser Q-switch," Opt. Lett. 28, 1460-1462 (2003).
[CrossRef] [PubMed]

2000 (1)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

1998 (1)

J. L. Blows, T. Omatus, J. Dawes, H. Pask, and M. Tateda, "Heat generation in Nd:YVO4 with and without laser action," IEEE Photonics Technol. Lett. 10, 1727-1729 (1998).
[CrossRef]

1997 (1)

1995 (1)

1992 (1)

1991 (1)

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. De Micheli, M. J. Li, Qing He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, "Nd:MgO:LiNbO3 channel waveguide laser devices," IEEE J. Quantum Electron. 27, 618-625 (1991).
[CrossRef]

1989 (1)

J. J. Degnan, "Theory of the optimally coupled Q-switched laser," IEEE J. Quantum Electron. 25, 214-220 (1989).
[CrossRef]

1988 (1)

1987 (1)

L. D. Shearer, M. Leduc, and J. Zachorowski, "CW laser oscillations and tuning characteristics of neodymium-doped lithium niobate crystals," IEEE J. Quantum Electron. QE-23, 1996-1998 (1987).
[CrossRef]

1986 (1)

Appl. Opt. (2)

Appl. Phys. Lett. (3)

H. Ishizuki, I. Shoji, and T. Taira, "Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature," Appl. Phys. Lett. 82, 4062-4064 (2003).
[CrossRef]

Z. D. Luo, Y. D. Huang, M. Montes, and D. Jaque, "Improving the performance of a neodymium aluminium borate microchip laser crystal by resonant pumping," Appl. Phys. Lett. 85, 715-717 (2004).
[CrossRef]

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Applied Physics B (1)

Y. H. Chen, Y. C. Huang, Y. Y. Lin, and Y. F. Chen, "Intracavity quasi-phase-matched elements for both low-voltage laser Q-switching and high-efficiency parametric generation," Appl. Phys. B 80, 889-896 (2005).
[CrossRef]

IEEE J. Quantum Electron. (3)

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. De Micheli, M. J. Li, Qing He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, "Nd:MgO:LiNbO3 channel waveguide laser devices," IEEE J. Quantum Electron. 27, 618-625 (1991).
[CrossRef]

J. J. Degnan, "Theory of the optimally coupled Q-switched laser," IEEE J. Quantum Electron. 25, 214-220 (1989).
[CrossRef]

L. D. Shearer, M. Leduc, and J. Zachorowski, "CW laser oscillations and tuning characteristics of neodymium-doped lithium niobate crystals," IEEE J. Quantum Electron. QE-23, 1996-1998 (1987).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

J. L. Blows, T. Omatus, J. Dawes, H. Pask, and M. Tateda, "Heat generation in Nd:YVO4 with and without laser action," IEEE Photonics Technol. Lett. 10, 1727-1729 (1998).
[CrossRef]

J. Appl. Phys. (1)

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, "Electric-field poling in Mg-doped LiNbO3," J. Appl. Phys. 96, 6585-6590 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Cross-sectional photographs of the HF-etched y surface of the fabricated Nd:MgO:PPLN crystal taken (a) near the former +z surface and (b) at the depth of ~600 µm from the former +z surface. (c) Schematic arrangement of a diode end-pumped, internal-Q-switched laser system using the fabricated Nd:MgO:PPLN crystal.

Fig. 2.
Fig. 2.

(a) Finite element analysis of the temperature distribution of the end-pumped Nd:MgO:PPLN with absorbed pump power at 0.61 W with the TEC stabilizing temperature kept at 40°C. The red line indicates the optical axis of the laser system. (b) Temperature (solid curve) and refractive indices changes (dotted and dashed curves for 1.085-µm σ-polarized and π-polarized waves, respectively) along the optical axis in the Nd:MgO:PPLN crystal.

Fig. 3.
Fig. 3.

Calculated electric-field tuning curves of the polarization-mode conversion efficiency of the Nd:MgO:PPLN device. Solid curve is the result obtained assuming the temperature distribution across the whole crystal is uniform at 40°C. Dashed curve is that using the temperature distribution obtained from Fig. 2(b).

Fig. 4.
Fig. 4.

Measured pulse width and pulse energy versus the absorbed pump power from the Nd:MgO:PPLN laser system driven at 5-kHz Q-switch rate. The solid and dash-dotted curves are the theoretical fittings for the two measurements, respectively. The inset shows a measured Q-switched laser pulse.

Fig. 5.
Fig. 5.

Measured peak power and pulse width as a function of the Q-switch repetition rate from the Nd:MgO:PPLN laser system at 0.57-W absorbed pump power. The solid and dash-dotted curves represent the theoretical fittings for the two measurements, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T ( E ) = A σ ( L , E ) A π ( 0 ) 2 ,
A π ( x j , E ) = A π ( x j 1 , E ) i κ ( x j , E ) A σ ( x j 1 , E ) Δ x e i Δ k x j , A σ ( x j , E ) = A σ ( x j 1 , E ) i κ * ( x j , E ) A π ( x j 1 , E ) Δ x e i Δ k x j ,
κ ( x j , E ) = s ( x j ) π λ 0 ( n σ n π ) 3 2 r 51 E .

Metrics