Abstract

We demonstrated a laser-diode-pumped, electro-optically internal-Q-switched laser system radiating at 1.085 µm fabricated using a periodically poled Nd:MgO:LiNbO3 (Nd:MgO:PPLN) crystal. The Nd:MgO:PPLN is 17-mm long and has a 12-mm long, 13.6-µm period polarization-mode quasi-phase-matching (PM QPM) grating section functioning as the Q-switch of the laser system. When the Nd:MgO:PPLN Q-switch was driven by a 260-V voltage pulse train at 5 kHz, we obtained laser pulses of pulse energy >2.45 µJ and a pulse width of ~28 ns, corresponding to a laser peak power of ~88 W, from this internal-Q-switched laser system with 2% output coupling at an absorbed diode pump power of 0.61 W.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Nd:MgO:LiNbO3 spectroscopy and laser devices

T. Y. Fan, A. Cordova-Plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw
J. Opt. Soc. Am. B 3(1) 140-148 (1986)

Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce
J. Opt. Soc. Am. B 12(11) 2102-2116 (1995)

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan, A. Cordova-Plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 spectroscopy and laser devices,” J. Opt. Soc. Am. B 3, 140–148 (1986).
    [Crossref]
  2. A. Cordova-Plaza, T. Y. Fan, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 continuous-wave laser pumped by a laser diode,” Opt. Lett. 13, 209–211 (1988).
    [Crossref] [PubMed]
  3. L. D. Shearer, M. Leduc, and J. Zachorowski, “CW laser oscillations and tuning characteristics of neodymium-doped lithium niobate crystals,” IEEE J. Quantum Electron. QE-23, 1996–1998 (1987).
    [Crossref]
  4. J. J. Zayhowski and C. Dill III, “Coupled-cavity electro-optically Q-switched Nd:YVO4 microchip lasers,” Opt. Lett. 20, 716–718 (1995).
    [Crossref] [PubMed]
  5. Y. X. Bai, N. Wu, J. Zhang, J. Q. Li, S. Q. Li, J. Xu, and P. Z. Deng, “Passively Q-switched Nd:YVO4 laser with a Cr4+:YAG crystal saturable absorber,” Appl. Opt. 36, 2468–2472 (1997).
    [Crossref] [PubMed]
  6. Y. H. Chen and Y. C. Huang, “Actively Q-switched Nd:YVO4 laser using an electro-optic PPLN crystal as a laser Q-switch,” Opt. Lett. 28, 1460–1462 (2003).
    [Crossref] [PubMed]
  7. M. Maiwald, S. Schwertfeger, R. Güther, B. Sumpf, K. Paschke, C. Dzionk, G. Erbert, and G. Tränkle, “600 mW optical output power at 488 nm by use of a high-power hybrid laser diode system and a periodically poled MgO:LiNbO3 bulk crystal,” Opt. Lett. 31, 802–804 (2006).
    [Crossref] [PubMed]
  8. H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett. 82, 4062–4064 (2003).
    [Crossref]
  9. Y. H. Chen, Y. C. Huang, Y. Y. Lin, and Y. F. Chen, “Intracavity quasi-phase-matched elements for both low-voltage laser Q-switching and high-efficiency parametric generation,” Applied Physics B 80, 889–896 (2005).
    [Crossref]
  10. K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys. 96, 6585–6590 (2004).
    [Crossref]
  11. E. Lallier, J. P. Pocholle, M. Papuchon, M. P. De Micheli, M. J. Li, Qing He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
    [Crossref]
  12. J. L. Blows, T. Omatus, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photonics Technol. Lett. 10, 1727–1729 (1998).
    [Crossref]
  13. Z. D. Luo, Y. D. Huang, M. Montes, and D. Jaque, “Improving the performance of a neodymium aluminium borate microchip laser crystal by resonant pumping,” Appl. Phys. Lett. 85, 715–717 (2004).
    [Crossref]
  14. H. Y. Shen, H. Xu, Z. D. Zeng, W. X. Lin, R. F. Wu, and G. F. Xu, “Measurement of refractive indices and thermal refractive-index coefficients of LiNbO3 crystal doped with 5 mol. % MgO,” Appl. Opt. 31, 6695–6697 (1992).
    [Crossref] [PubMed]
  15. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
    [Crossref]
  16. J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
    [Crossref]

2006 (1)

2005 (1)

Y. H. Chen, Y. C. Huang, Y. Y. Lin, and Y. F. Chen, “Intracavity quasi-phase-matched elements for both low-voltage laser Q-switching and high-efficiency parametric generation,” Applied Physics B 80, 889–896 (2005).
[Crossref]

2004 (2)

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys. 96, 6585–6590 (2004).
[Crossref]

Z. D. Luo, Y. D. Huang, M. Montes, and D. Jaque, “Improving the performance of a neodymium aluminium borate microchip laser crystal by resonant pumping,” Appl. Phys. Lett. 85, 715–717 (2004).
[Crossref]

2003 (2)

H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett. 82, 4062–4064 (2003).
[Crossref]

Y. H. Chen and Y. C. Huang, “Actively Q-switched Nd:YVO4 laser using an electro-optic PPLN crystal as a laser Q-switch,” Opt. Lett. 28, 1460–1462 (2003).
[Crossref] [PubMed]

2000 (1)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
[Crossref]

1998 (1)

J. L. Blows, T. Omatus, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photonics Technol. Lett. 10, 1727–1729 (1998).
[Crossref]

1997 (1)

1995 (1)

1992 (1)

1991 (1)

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. De Micheli, M. J. Li, Qing He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[Crossref]

1989 (1)

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[Crossref]

1988 (1)

1987 (1)

L. D. Shearer, M. Leduc, and J. Zachorowski, “CW laser oscillations and tuning characteristics of neodymium-doped lithium niobate crystals,” IEEE J. Quantum Electron. QE-23, 1996–1998 (1987).
[Crossref]

1986 (1)

Bai, Y. X.

Blows, J. L.

J. L. Blows, T. Omatus, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photonics Technol. Lett. 10, 1727–1729 (1998).
[Crossref]

Byer, R. L.

Chen, Y. F.

Y. H. Chen, Y. C. Huang, Y. Y. Lin, and Y. F. Chen, “Intracavity quasi-phase-matched elements for both low-voltage laser Q-switching and high-efficiency parametric generation,” Applied Physics B 80, 889–896 (2005).
[Crossref]

Chen, Y. H.

Y. H. Chen, Y. C. Huang, Y. Y. Lin, and Y. F. Chen, “Intracavity quasi-phase-matched elements for both low-voltage laser Q-switching and high-efficiency parametric generation,” Applied Physics B 80, 889–896 (2005).
[Crossref]

Y. H. Chen and Y. C. Huang, “Actively Q-switched Nd:YVO4 laser using an electro-optic PPLN crystal as a laser Q-switch,” Opt. Lett. 28, 1460–1462 (2003).
[Crossref] [PubMed]

Cordova-Plaza, A.

Dawes, J.

J. L. Blows, T. Omatus, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photonics Technol. Lett. 10, 1727–1729 (1998).
[Crossref]

De Micheli, M. P.

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. De Micheli, M. J. Li, Qing He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[Crossref]

Degnan, J. J.

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[Crossref]

Deng, P. Z.

Digonnet, M. J. F.

Dill III, C.

Dzionk, C.

Erbert, G.

Fan, T. Y.

Grezes-Besset, C.

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. De Micheli, M. J. Li, Qing He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[Crossref]

Güther, R.

He, Qing

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. De Micheli, M. J. Li, Qing He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[Crossref]

Huang, Y. C.

Y. H. Chen, Y. C. Huang, Y. Y. Lin, and Y. F. Chen, “Intracavity quasi-phase-matched elements for both low-voltage laser Q-switching and high-efficiency parametric generation,” Applied Physics B 80, 889–896 (2005).
[Crossref]

Y. H. Chen and Y. C. Huang, “Actively Q-switched Nd:YVO4 laser using an electro-optic PPLN crystal as a laser Q-switch,” Opt. Lett. 28, 1460–1462 (2003).
[Crossref] [PubMed]

Huang, Y. D.

Z. D. Luo, Y. D. Huang, M. Montes, and D. Jaque, “Improving the performance of a neodymium aluminium borate microchip laser crystal by resonant pumping,” Appl. Phys. Lett. 85, 715–717 (2004).
[Crossref]

Ishizuki, H.

H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett. 82, 4062–4064 (2003).
[Crossref]

Jaque, D.

Z. D. Luo, Y. D. Huang, M. Montes, and D. Jaque, “Improving the performance of a neodymium aluminium borate microchip laser crystal by resonant pumping,” Appl. Phys. Lett. 85, 715–717 (2004).
[Crossref]

Lallier, E.

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. De Micheli, M. J. Li, Qing He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[Crossref]

Leduc, M.

L. D. Shearer, M. Leduc, and J. Zachorowski, “CW laser oscillations and tuning characteristics of neodymium-doped lithium niobate crystals,” IEEE J. Quantum Electron. QE-23, 1996–1998 (1987).
[Crossref]

Li, J. Q.

Li, M. J.

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. De Micheli, M. J. Li, Qing He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[Crossref]

Li, S. Q.

Lin, W. X.

Lin, Y. Y.

Y. H. Chen, Y. C. Huang, Y. Y. Lin, and Y. F. Chen, “Intracavity quasi-phase-matched elements for both low-voltage laser Q-switching and high-efficiency parametric generation,” Applied Physics B 80, 889–896 (2005).
[Crossref]

Lu, Y. Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
[Crossref]

Luo, Z. D.

Z. D. Luo, Y. D. Huang, M. Montes, and D. Jaque, “Improving the performance of a neodymium aluminium borate microchip laser crystal by resonant pumping,” Appl. Phys. Lett. 85, 715–717 (2004).
[Crossref]

Maiwald, M.

Ming, N. B.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
[Crossref]

Mizuuchi, K.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys. 96, 6585–6590 (2004).
[Crossref]

Montes, M.

Z. D. Luo, Y. D. Huang, M. Montes, and D. Jaque, “Improving the performance of a neodymium aluminium borate microchip laser crystal by resonant pumping,” Appl. Phys. Lett. 85, 715–717 (2004).
[Crossref]

Morikawa, A.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys. 96, 6585–6590 (2004).
[Crossref]

Omatus, T.

J. L. Blows, T. Omatus, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photonics Technol. Lett. 10, 1727–1729 (1998).
[Crossref]

Ostrowsky, D. B.

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. De Micheli, M. J. Li, Qing He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[Crossref]

Papuchon, M.

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. De Micheli, M. J. Li, Qing He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[Crossref]

Paschke, K.

Pask, H.

J. L. Blows, T. Omatus, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photonics Technol. Lett. 10, 1727–1729 (1998).
[Crossref]

Pelletier, E.

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. De Micheli, M. J. Li, Qing He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[Crossref]

Pocholle, J. P.

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. De Micheli, M. J. Li, Qing He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[Crossref]

Schwertfeger, S.

Shaw, H. J.

Shearer, L. D.

L. D. Shearer, M. Leduc, and J. Zachorowski, “CW laser oscillations and tuning characteristics of neodymium-doped lithium niobate crystals,” IEEE J. Quantum Electron. QE-23, 1996–1998 (1987).
[Crossref]

Shen, H. Y.

Shoji, I.

H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett. 82, 4062–4064 (2003).
[Crossref]

Sugita, T.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys. 96, 6585–6590 (2004).
[Crossref]

Sumpf, B.

Taira, T.

H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett. 82, 4062–4064 (2003).
[Crossref]

Tateda, M.

J. L. Blows, T. Omatus, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photonics Technol. Lett. 10, 1727–1729 (1998).
[Crossref]

Tränkle, G.

Wan, Z. L.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
[Crossref]

Wang, Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
[Crossref]

Wu, N.

Wu, R. F.

Xi, Y. X.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
[Crossref]

Xu, G. F.

Xu, H.

Xu, J.

Yamamoto, K.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys. 96, 6585–6590 (2004).
[Crossref]

Zachorowski, J.

L. D. Shearer, M. Leduc, and J. Zachorowski, “CW laser oscillations and tuning characteristics of neodymium-doped lithium niobate crystals,” IEEE J. Quantum Electron. QE-23, 1996–1998 (1987).
[Crossref]

Zayhowski, J. J.

Zeng, Z. D.

Zhang, J.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
[Crossref]

Z. D. Luo, Y. D. Huang, M. Montes, and D. Jaque, “Improving the performance of a neodymium aluminium borate microchip laser crystal by resonant pumping,” Appl. Phys. Lett. 85, 715–717 (2004).
[Crossref]

H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett. 82, 4062–4064 (2003).
[Crossref]

Applied Physics B (1)

Y. H. Chen, Y. C. Huang, Y. Y. Lin, and Y. F. Chen, “Intracavity quasi-phase-matched elements for both low-voltage laser Q-switching and high-efficiency parametric generation,” Applied Physics B 80, 889–896 (2005).
[Crossref]

IEEE J. Quantum Electron. (3)

L. D. Shearer, M. Leduc, and J. Zachorowski, “CW laser oscillations and tuning characteristics of neodymium-doped lithium niobate crystals,” IEEE J. Quantum Electron. QE-23, 1996–1998 (1987).
[Crossref]

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[Crossref]

E. Lallier, J. P. Pocholle, M. Papuchon, M. P. De Micheli, M. J. Li, Qing He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron. 27, 618–625 (1991).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. L. Blows, T. Omatus, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photonics Technol. Lett. 10, 1727–1729 (1998).
[Crossref]

J. Appl. Phys. (1)

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys. 96, 6585–6590 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Cross-sectional photographs of the HF-etched y surface of the fabricated Nd:MgO:PPLN crystal taken (a) near the former +z surface and (b) at the depth of ~600 µm from the former +z surface. (c) Schematic arrangement of a diode end-pumped, internal-Q-switched laser system using the fabricated Nd:MgO:PPLN crystal.

Fig. 2.
Fig. 2.

(a) Finite element analysis of the temperature distribution of the end-pumped Nd:MgO:PPLN with absorbed pump power at 0.61 W with the TEC stabilizing temperature kept at 40°C. The red line indicates the optical axis of the laser system. (b) Temperature (solid curve) and refractive indices changes (dotted and dashed curves for 1.085-µm σ-polarized and π-polarized waves, respectively) along the optical axis in the Nd:MgO:PPLN crystal.

Fig. 3.
Fig. 3.

Calculated electric-field tuning curves of the polarization-mode conversion efficiency of the Nd:MgO:PPLN device. Solid curve is the result obtained assuming the temperature distribution across the whole crystal is uniform at 40°C. Dashed curve is that using the temperature distribution obtained from Fig. 2(b).

Fig. 4.
Fig. 4.

Measured pulse width and pulse energy versus the absorbed pump power from the Nd:MgO:PPLN laser system driven at 5-kHz Q-switch rate. The solid and dash-dotted curves are the theoretical fittings for the two measurements, respectively. The inset shows a measured Q-switched laser pulse.

Fig. 5.
Fig. 5.

Measured peak power and pulse width as a function of the Q-switch repetition rate from the Nd:MgO:PPLN laser system at 0.57-W absorbed pump power. The solid and dash-dotted curves represent the theoretical fittings for the two measurements, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T ( E ) = A σ ( L , E ) A π ( 0 ) 2 ,
A π ( x j , E ) = A π ( x j 1 , E ) i κ ( x j , E ) A σ ( x j 1 , E ) Δ x e i Δ k x j , A σ ( x j , E ) = A σ ( x j 1 , E ) i κ * ( x j , E ) A π ( x j 1 , E ) Δ x e i Δ k x j ,
κ ( x j , E ) = s ( x j ) π λ 0 ( n σ n π ) 3 2 r 51 E .

Metrics