Abstract

Elastic strain, electrical bias, and localized geometric deformations were applied to elliptical whispering-gallery-mode resonators fabricated with lithium niobate. The resultant perturbation of the mode spectrum is highly dependant on the modal indices, resulting in a discretely reconfigurable optical spectrum. Breaking of the spatial degeneracy of the whispering-gallery modes due to perturbation is also observed.

©2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-Q optical whispering gallery modes in elliptical LiNbO3 resonant cavities

Makan Mohageg, Anatoliy Savchenkov, and Lute Maleki
Opt. Express 15(8) 4869-4875 (2007)

Tuning of whispering gallery modes of spherical resonators using an external electric field

Tindaro Ioppolo, Ulas Ayaz, and M. Volkan Ötügen
Opt. Express 17(19) 16465-16479 (2009)

White-light whispering gallery mode resonators

Anatoliy A. Savchenkov, Andrey B. Matsko, and Lute Maleki
Opt. Lett. 31(1) 92-94 (2006)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin and J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803 (1981).
    [Crossref] [PubMed]
  2. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering gallery mode,” Phys. Lett. A,  137, 393397 (1989).
    [Crossref]
  3. S. C. Hill and R. E. Benner,“Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds., (World Scientific, 1988) pp. 7–34.
  4. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Dispersion compensation in whispering-gallery modes,” J. Opt. Soc. Am. A 20, 157 (2003).
    [Crossref]
  5. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett., “Ultimate Q of optical microsphere resonators,”  21, 453 (1996).
    [Crossref] [PubMed]
  6. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, Phys. “Kilohertz optical resonances in dielectric crystal cavities,” Rev. A,  70, 051804(R) (2004).
    [Crossref]
  7. D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, Phys. Rev. A, “Cavity QED with high-Q whispering gallery modes,”  57, R2293 (1998).
    [Crossref]
  8. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A,  71, 013817 (2005).
    [Crossref]
  9. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Tunable Filter Based on Whispering Gallery Modes,” Electron. Lett.,  39, No. 4, 389 (2003).
    [Crossref]
  10. T. Indukuri, P. Koonath, and B. Jalali, “Three-dimensional integration of metal-oxide-semiconductor transistor with subterranean photonics in silicon,” App. Phys. Lett.,  88, 121108 (2006).
    [Crossref]
  11. J. E. Ford and J. A Walker “Dynamic Spectral Power Equalization Using Micro-Opto-Mechanics,” IEEE Photon. Technol. Lett.,  10, 1440 (1998).
    [Crossref]
  12. J. E. Ford, V. A. Aksyuk, D. J. Bishop, and J. A. Walker “Wavelength Add-Drop Switching Using Tilting Micromirrors,” J. Lightw. Technol.,  17, 904 (1999).
    [Crossref]
  13. T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura “Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating,” IEEE Photon. Technol. Lett.,  15, 1109 (2003).
    [Crossref]
  14. N. Ph. Georgiades, E. S. Polzik, and H. J. Kimble, “Atoms as nonlinear mixers for detection of quantum correlations at ultrahigh frequencies,” Phys. Rev. A,  55, R1605 (1997).
    [Crossref]
  15. M. Porrati and S. Putterman, “Wave-function collapse due to null measurements: The origin of intermittent atomic fluorescence,” Phys. Rev. A,  36, 929 (1987).
    [Crossref] [PubMed]
  16. A. Dantan, A. Bramati, and M. Pinard, “Atomic quantum memory: Cavity versus single-pass schemes,” Phys. Rev. A,  71, 043801 (2005).
    [Crossref]
  17. M. Mohageg, A.A. Savchenkov, and L. Maleki, “High-Q optical whispering gallery modes in elliptical LiNbO3 resonant cavities,” Opt. Express,  15, No. 8, 4869 (2007).
    [Crossref] [PubMed]
  18. V.S. Ilchenko, P.S. Volikov, V.L. Velichansky, F. Treussart, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Comm.,  145, No. 1, 86 (1988).
    [Crossref]
  19. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear Optics and Crystalline Whispering Gallery Mode Cavities,” Phys. Rev. Lett.,  92, 043903 (2004).
    [Crossref] [PubMed]
  20. Makan Mohageg, D. V. Strekalov, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Calligraphic poling of Lithium Niobate,” Opt. Express,  13, No. 9, 3408 (2005).
    [Crossref] [PubMed]
  21. M. Mohageg, A. A. Savchenkov, D. Strekalov, A. B. Matsko, V.S. Ilchenko, and L. Maleki, “Reconfigurable optical filter,” Electron. Lett. 41, No. 6 (2005).
    [Crossref]
  22. A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, “Whispering gallery mode based optoelectronic microwave oscillator,” J. Mod. Opt. 50, No. 15, 2523–2542 (2003).
  23. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express,  13, No. 14, 5000 (2005).
    [Crossref]

2007 (1)

2006 (1)

T. Indukuri, P. Koonath, and B. Jalali, “Three-dimensional integration of metal-oxide-semiconductor transistor with subterranean photonics in silicon,” App. Phys. Lett.,  88, 121108 (2006).
[Crossref]

2005 (5)

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A,  71, 013817 (2005).
[Crossref]

A. Dantan, A. Bramati, and M. Pinard, “Atomic quantum memory: Cavity versus single-pass schemes,” Phys. Rev. A,  71, 043801 (2005).
[Crossref]

M. Mohageg, A. A. Savchenkov, D. Strekalov, A. B. Matsko, V.S. Ilchenko, and L. Maleki, “Reconfigurable optical filter,” Electron. Lett. 41, No. 6 (2005).
[Crossref]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express,  13, No. 14, 5000 (2005).
[Crossref]

Makan Mohageg, D. V. Strekalov, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Calligraphic poling of Lithium Niobate,” Opt. Express,  13, No. 9, 3408 (2005).
[Crossref] [PubMed]

2004 (2)

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear Optics and Crystalline Whispering Gallery Mode Cavities,” Phys. Rev. Lett.,  92, 043903 (2004).
[Crossref] [PubMed]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, Phys. “Kilohertz optical resonances in dielectric crystal cavities,” Rev. A,  70, 051804(R) (2004).
[Crossref]

2003 (4)

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Tunable Filter Based on Whispering Gallery Modes,” Electron. Lett.,  39, No. 4, 389 (2003).
[Crossref]

T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura “Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating,” IEEE Photon. Technol. Lett.,  15, 1109 (2003).
[Crossref]

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, “Whispering gallery mode based optoelectronic microwave oscillator,” J. Mod. Opt. 50, No. 15, 2523–2542 (2003).

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Dispersion compensation in whispering-gallery modes,” J. Opt. Soc. Am. A 20, 157 (2003).
[Crossref]

1999 (1)

J. E. Ford, V. A. Aksyuk, D. J. Bishop, and J. A. Walker “Wavelength Add-Drop Switching Using Tilting Micromirrors,” J. Lightw. Technol.,  17, 904 (1999).
[Crossref]

1998 (2)

J. E. Ford and J. A Walker “Dynamic Spectral Power Equalization Using Micro-Opto-Mechanics,” IEEE Photon. Technol. Lett.,  10, 1440 (1998).
[Crossref]

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, Phys. Rev. A, “Cavity QED with high-Q whispering gallery modes,”  57, R2293 (1998).
[Crossref]

1997 (1)

N. Ph. Georgiades, E. S. Polzik, and H. J. Kimble, “Atoms as nonlinear mixers for detection of quantum correlations at ultrahigh frequencies,” Phys. Rev. A,  55, R1605 (1997).
[Crossref]

1996 (1)

1989 (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering gallery mode,” Phys. Lett. A,  137, 393397 (1989).
[Crossref]

1988 (1)

V.S. Ilchenko, P.S. Volikov, V.L. Velichansky, F. Treussart, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Comm.,  145, No. 1, 86 (1988).
[Crossref]

1987 (1)

M. Porrati and S. Putterman, “Wave-function collapse due to null measurements: The origin of intermittent atomic fluorescence,” Phys. Rev. A,  36, 929 (1987).
[Crossref] [PubMed]

1981 (1)

Aksyuk, V. A.

J. E. Ford, V. A. Aksyuk, D. J. Bishop, and J. A. Walker “Wavelength Add-Drop Switching Using Tilting Micromirrors,” J. Lightw. Technol.,  17, 904 (1999).
[Crossref]

Ashkin, A.

Benner, R. E.

S. C. Hill and R. E. Benner,“Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds., (World Scientific, 1988) pp. 7–34.

Bishop, D. J.

J. E. Ford, V. A. Aksyuk, D. J. Bishop, and J. A. Walker “Wavelength Add-Drop Switching Using Tilting Micromirrors,” J. Lightw. Technol.,  17, 904 (1999).
[Crossref]

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering gallery mode,” Phys. Lett. A,  137, 393397 (1989).
[Crossref]

Bramati, A.

A. Dantan, A. Bramati, and M. Pinard, “Atomic quantum memory: Cavity versus single-pass schemes,” Phys. Rev. A,  71, 043801 (2005).
[Crossref]

Carmon, T.

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express,  13, No. 14, 5000 (2005).
[Crossref]

Dantan, A.

A. Dantan, A. Bramati, and M. Pinard, “Atomic quantum memory: Cavity versus single-pass schemes,” Phys. Rev. A,  71, 043801 (2005).
[Crossref]

Dziedzic, J. M.

Ford, J. E.

J. E. Ford, V. A. Aksyuk, D. J. Bishop, and J. A. Walker “Wavelength Add-Drop Switching Using Tilting Micromirrors,” J. Lightw. Technol.,  17, 904 (1999).
[Crossref]

J. E. Ford and J. A Walker “Dynamic Spectral Power Equalization Using Micro-Opto-Mechanics,” IEEE Photon. Technol. Lett.,  10, 1440 (1998).
[Crossref]

Furusawa, A.

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, Phys. Rev. A, “Cavity QED with high-Q whispering gallery modes,”  57, R2293 (1998).
[Crossref]

Georgiades, N. Ph.

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, Phys. Rev. A, “Cavity QED with high-Q whispering gallery modes,”  57, R2293 (1998).
[Crossref]

N. Ph. Georgiades, E. S. Polzik, and H. J. Kimble, “Atoms as nonlinear mixers for detection of quantum correlations at ultrahigh frequencies,” Phys. Rev. A,  55, R1605 (1997).
[Crossref]

Goh, K. W.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A,  71, 013817 (2005).
[Crossref]

Gorodetsky, M. L.

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett., “Ultimate Q of optical microsphere resonators,”  21, 453 (1996).
[Crossref] [PubMed]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering gallery mode,” Phys. Lett. A,  137, 393397 (1989).
[Crossref]

Haroche, S.

V.S. Ilchenko, P.S. Volikov, V.L. Velichansky, F. Treussart, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Comm.,  145, No. 1, 86 (1988).
[Crossref]

Harumoto, M.

T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura “Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating,” IEEE Photon. Technol. Lett.,  15, 1109 (2003).
[Crossref]

Hill, S. C.

S. C. Hill and R. E. Benner,“Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds., (World Scientific, 1988) pp. 7–34.

Ilchenko, V. S.

Makan Mohageg, D. V. Strekalov, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Calligraphic poling of Lithium Niobate,” Opt. Express,  13, No. 9, 3408 (2005).
[Crossref] [PubMed]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear Optics and Crystalline Whispering Gallery Mode Cavities,” Phys. Rev. Lett.,  92, 043903 (2004).
[Crossref] [PubMed]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, Phys. “Kilohertz optical resonances in dielectric crystal cavities,” Rev. A,  70, 051804(R) (2004).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Tunable Filter Based on Whispering Gallery Modes,” Electron. Lett.,  39, No. 4, 389 (2003).
[Crossref]

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, “Whispering gallery mode based optoelectronic microwave oscillator,” J. Mod. Opt. 50, No. 15, 2523–2542 (2003).

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Dispersion compensation in whispering-gallery modes,” J. Opt. Soc. Am. A 20, 157 (2003).
[Crossref]

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, Phys. Rev. A, “Cavity QED with high-Q whispering gallery modes,”  57, R2293 (1998).
[Crossref]

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett., “Ultimate Q of optical microsphere resonators,”  21, 453 (1996).
[Crossref] [PubMed]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering gallery mode,” Phys. Lett. A,  137, 393397 (1989).
[Crossref]

Ilchenko, V.S.

M. Mohageg, A. A. Savchenkov, D. Strekalov, A. B. Matsko, V.S. Ilchenko, and L. Maleki, “Reconfigurable optical filter,” Electron. Lett. 41, No. 6 (2005).
[Crossref]

V.S. Ilchenko, P.S. Volikov, V.L. Velichansky, F. Treussart, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Comm.,  145, No. 1, 86 (1988).
[Crossref]

Indukuri, T.

T. Indukuri, P. Koonath, and B. Jalali, “Three-dimensional integration of metal-oxide-semiconductor transistor with subterranean photonics in silicon,” App. Phys. Lett.,  88, 121108 (2006).
[Crossref]

Iwashima, T.

T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura “Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating,” IEEE Photon. Technol. Lett.,  15, 1109 (2003).
[Crossref]

Jalali, B.

T. Indukuri, P. Koonath, and B. Jalali, “Three-dimensional integration of metal-oxide-semiconductor transistor with subterranean photonics in silicon,” App. Phys. Lett.,  88, 121108 (2006).
[Crossref]

Kanie, T.

T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura “Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating,” IEEE Photon. Technol. Lett.,  15, 1109 (2003).
[Crossref]

Katayama, M.

T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura “Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating,” IEEE Photon. Technol. Lett.,  15, 1109 (2003).
[Crossref]

Kimble, H. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A,  71, 013817 (2005).
[Crossref]

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, Phys. Rev. A, “Cavity QED with high-Q whispering gallery modes,”  57, R2293 (1998).
[Crossref]

N. Ph. Georgiades, E. S. Polzik, and H. J. Kimble, “Atoms as nonlinear mixers for detection of quantum correlations at ultrahigh frequencies,” Phys. Rev. A,  55, R1605 (1997).
[Crossref]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A,  71, 013817 (2005).
[Crossref]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express,  13, No. 14, 5000 (2005).
[Crossref]

Koonath, P.

T. Indukuri, P. Koonath, and B. Jalali, “Three-dimensional integration of metal-oxide-semiconductor transistor with subterranean photonics in silicon,” App. Phys. Lett.,  88, 121108 (2006).
[Crossref]

Lefevre-Seguin, V.

V.S. Ilchenko, P.S. Volikov, V.L. Velichansky, F. Treussart, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Comm.,  145, No. 1, 86 (1988).
[Crossref]

Maleki, L.

M. Mohageg, A.A. Savchenkov, and L. Maleki, “High-Q optical whispering gallery modes in elliptical LiNbO3 resonant cavities,” Opt. Express,  15, No. 8, 4869 (2007).
[Crossref] [PubMed]

Makan Mohageg, D. V. Strekalov, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Calligraphic poling of Lithium Niobate,” Opt. Express,  13, No. 9, 3408 (2005).
[Crossref] [PubMed]

M. Mohageg, A. A. Savchenkov, D. Strekalov, A. B. Matsko, V.S. Ilchenko, and L. Maleki, “Reconfigurable optical filter,” Electron. Lett. 41, No. 6 (2005).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear Optics and Crystalline Whispering Gallery Mode Cavities,” Phys. Rev. Lett.,  92, 043903 (2004).
[Crossref] [PubMed]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, Phys. “Kilohertz optical resonances in dielectric crystal cavities,” Rev. A,  70, 051804(R) (2004).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Tunable Filter Based on Whispering Gallery Modes,” Electron. Lett.,  39, No. 4, 389 (2003).
[Crossref]

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, “Whispering gallery mode based optoelectronic microwave oscillator,” J. Mod. Opt. 50, No. 15, 2523–2542 (2003).

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Dispersion compensation in whispering-gallery modes,” J. Opt. Soc. Am. A 20, 157 (2003).
[Crossref]

Matsko, A. B.

Makan Mohageg, D. V. Strekalov, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Calligraphic poling of Lithium Niobate,” Opt. Express,  13, No. 9, 3408 (2005).
[Crossref] [PubMed]

M. Mohageg, A. A. Savchenkov, D. Strekalov, A. B. Matsko, V.S. Ilchenko, and L. Maleki, “Reconfigurable optical filter,” Electron. Lett. 41, No. 6 (2005).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear Optics and Crystalline Whispering Gallery Mode Cavities,” Phys. Rev. Lett.,  92, 043903 (2004).
[Crossref] [PubMed]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, Phys. “Kilohertz optical resonances in dielectric crystal cavities,” Rev. A,  70, 051804(R) (2004).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Tunable Filter Based on Whispering Gallery Modes,” Electron. Lett.,  39, No. 4, 389 (2003).
[Crossref]

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, “Whispering gallery mode based optoelectronic microwave oscillator,” J. Mod. Opt. 50, No. 15, 2523–2542 (2003).

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Dispersion compensation in whispering-gallery modes,” J. Opt. Soc. Am. A 20, 157 (2003).
[Crossref]

Mohageg, M.

M. Mohageg, A.A. Savchenkov, and L. Maleki, “High-Q optical whispering gallery modes in elliptical LiNbO3 resonant cavities,” Opt. Express,  15, No. 8, 4869 (2007).
[Crossref] [PubMed]

M. Mohageg, A. A. Savchenkov, D. Strekalov, A. B. Matsko, V.S. Ilchenko, and L. Maleki, “Reconfigurable optical filter,” Electron. Lett. 41, No. 6 (2005).
[Crossref]

Mohageg, Makan

Nishimura, M.

T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura “Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating,” IEEE Photon. Technol. Lett.,  15, 1109 (2003).
[Crossref]

Pinard, M.

A. Dantan, A. Bramati, and M. Pinard, “Atomic quantum memory: Cavity versus single-pass schemes,” Phys. Rev. A,  71, 043801 (2005).
[Crossref]

Polzik, E. S.

N. Ph. Georgiades, E. S. Polzik, and H. J. Kimble, “Atoms as nonlinear mixers for detection of quantum correlations at ultrahigh frequencies,” Phys. Rev. A,  55, R1605 (1997).
[Crossref]

Porrati, M.

M. Porrati and S. Putterman, “Wave-function collapse due to null measurements: The origin of intermittent atomic fluorescence,” Phys. Rev. A,  36, 929 (1987).
[Crossref] [PubMed]

Putterman, S.

M. Porrati and S. Putterman, “Wave-function collapse due to null measurements: The origin of intermittent atomic fluorescence,” Phys. Rev. A,  36, 929 (1987).
[Crossref] [PubMed]

Raimond, J.-M.

V.S. Ilchenko, P.S. Volikov, V.L. Velichansky, F. Treussart, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Comm.,  145, No. 1, 86 (1988).
[Crossref]

Rokhsari, H.

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express,  13, No. 14, 5000 (2005).
[Crossref]

Sano, T.

T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura “Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating,” IEEE Photon. Technol. Lett.,  15, 1109 (2003).
[Crossref]

Savchenkov, A. A.

M. Mohageg, A. A. Savchenkov, D. Strekalov, A. B. Matsko, V.S. Ilchenko, and L. Maleki, “Reconfigurable optical filter,” Electron. Lett. 41, No. 6 (2005).
[Crossref]

Makan Mohageg, D. V. Strekalov, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Calligraphic poling of Lithium Niobate,” Opt. Express,  13, No. 9, 3408 (2005).
[Crossref] [PubMed]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear Optics and Crystalline Whispering Gallery Mode Cavities,” Phys. Rev. Lett.,  92, 043903 (2004).
[Crossref] [PubMed]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, Phys. “Kilohertz optical resonances in dielectric crystal cavities,” Rev. A,  70, 051804(R) (2004).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Tunable Filter Based on Whispering Gallery Modes,” Electron. Lett.,  39, No. 4, 389 (2003).
[Crossref]

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, “Whispering gallery mode based optoelectronic microwave oscillator,” J. Mod. Opt. 50, No. 15, 2523–2542 (2003).

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Dispersion compensation in whispering-gallery modes,” J. Opt. Soc. Am. A 20, 157 (2003).
[Crossref]

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett., “Ultimate Q of optical microsphere resonators,”  21, 453 (1996).
[Crossref] [PubMed]

Savchenkov, A.A.

Shigehara, M.

T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura “Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating,” IEEE Photon. Technol. Lett.,  15, 1109 (2003).
[Crossref]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A,  71, 013817 (2005).
[Crossref]

Strekalov, D.

M. Mohageg, A. A. Savchenkov, D. Strekalov, A. B. Matsko, V.S. Ilchenko, and L. Maleki, “Reconfigurable optical filter,” Electron. Lett. 41, No. 6 (2005).
[Crossref]

Strekalov, D. V.

Suganuma, H.

T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura “Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating,” IEEE Photon. Technol. Lett.,  15, 1109 (2003).
[Crossref]

Treussart, F.

V.S. Ilchenko, P.S. Volikov, V.L. Velichansky, F. Treussart, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Comm.,  145, No. 1, 86 (1988).
[Crossref]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A,  71, 013817 (2005).
[Crossref]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express,  13, No. 14, 5000 (2005).
[Crossref]

Velichansky, V.L.

V.S. Ilchenko, P.S. Volikov, V.L. Velichansky, F. Treussart, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Comm.,  145, No. 1, 86 (1988).
[Crossref]

Vernooy, D. W.

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, Phys. Rev. A, “Cavity QED with high-Q whispering gallery modes,”  57, R2293 (1998).
[Crossref]

Volikov, P.S.

V.S. Ilchenko, P.S. Volikov, V.L. Velichansky, F. Treussart, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Comm.,  145, No. 1, 86 (1988).
[Crossref]

Walker, J. A

J. E. Ford and J. A Walker “Dynamic Spectral Power Equalization Using Micro-Opto-Mechanics,” IEEE Photon. Technol. Lett.,  10, 1440 (1998).
[Crossref]

Walker, J. A.

J. E. Ford, V. A. Aksyuk, D. J. Bishop, and J. A. Walker “Wavelength Add-Drop Switching Using Tilting Micromirrors,” J. Lightw. Technol.,  17, 904 (1999).
[Crossref]

Wilcut, E.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A,  71, 013817 (2005).
[Crossref]

App. Phys. Lett. (1)

T. Indukuri, P. Koonath, and B. Jalali, “Three-dimensional integration of metal-oxide-semiconductor transistor with subterranean photonics in silicon,” App. Phys. Lett.,  88, 121108 (2006).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (2)

M. Mohageg, A. A. Savchenkov, D. Strekalov, A. B. Matsko, V.S. Ilchenko, and L. Maleki, “Reconfigurable optical filter,” Electron. Lett. 41, No. 6 (2005).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Tunable Filter Based on Whispering Gallery Modes,” Electron. Lett.,  39, No. 4, 389 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (2)

T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura “Novel multichannel tunable chromatic dispersion compensator based on MEMS and diffraction grating,” IEEE Photon. Technol. Lett.,  15, 1109 (2003).
[Crossref]

J. E. Ford and J. A Walker “Dynamic Spectral Power Equalization Using Micro-Opto-Mechanics,” IEEE Photon. Technol. Lett.,  10, 1440 (1998).
[Crossref]

J. Lightw. Technol. (1)

J. E. Ford, V. A. Aksyuk, D. J. Bishop, and J. A. Walker “Wavelength Add-Drop Switching Using Tilting Micromirrors,” J. Lightw. Technol.,  17, 904 (1999).
[Crossref]

J. Mod. Opt. (1)

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, “Whispering gallery mode based optoelectronic microwave oscillator,” J. Mod. Opt. 50, No. 15, 2523–2542 (2003).

J. Opt. Soc. Am. A (1)

Opt. Comm. (1)

V.S. Ilchenko, P.S. Volikov, V.L. Velichansky, F. Treussart, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Comm.,  145, No. 1, 86 (1988).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering gallery mode,” Phys. Lett. A,  137, 393397 (1989).
[Crossref]

Phys. Rev. A (5)

N. Ph. Georgiades, E. S. Polzik, and H. J. Kimble, “Atoms as nonlinear mixers for detection of quantum correlations at ultrahigh frequencies,” Phys. Rev. A,  55, R1605 (1997).
[Crossref]

M. Porrati and S. Putterman, “Wave-function collapse due to null measurements: The origin of intermittent atomic fluorescence,” Phys. Rev. A,  36, 929 (1987).
[Crossref] [PubMed]

A. Dantan, A. Bramati, and M. Pinard, “Atomic quantum memory: Cavity versus single-pass schemes,” Phys. Rev. A,  71, 043801 (2005).
[Crossref]

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, Phys. Rev. A, “Cavity QED with high-Q whispering gallery modes,”  57, R2293 (1998).
[Crossref]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A,  71, 013817 (2005).
[Crossref]

Phys. Rev. Lett. (1)

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear Optics and Crystalline Whispering Gallery Mode Cavities,” Phys. Rev. Lett.,  92, 043903 (2004).
[Crossref] [PubMed]

Rev. A (1)

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, Phys. “Kilohertz optical resonances in dielectric crystal cavities,” Rev. A,  70, 051804(R) (2004).
[Crossref]

Other (1)

S. C. Hill and R. E. Benner,“Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds., (World Scientific, 1988) pp. 7–34.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Picture of a coupled WGM resonator with elliptical cross-section. A fiber pigtailed GRIN lens (i) launches the light beam with appropriate numeric aperture and incident angle into the diamond prism (ii.) The resonator (iii) is separated from the prism surface by some fraction of a µm to ensure critical coupling. Light exiting the resonator through the prism is collected in the light pipe (iv) and sent to a photodiode (not shown.) Other exit channels exist of the light in the WGM, particularly scattering from surface defects and internal defects. These exit channels contribute to loss and are characterized by broader linewidths and reduced overall coupling.

Fig. 2.
Fig. 2.

Schematic of the active frequency lock used to lock the laser frequency to the cavity resonance. S12 is the resonator reflection spectra.

Fig. 3.
Fig. 3.

Spectrum demonstrating interaction of optical mode with rf field. The rf frequency was set to twice the optical FSR. The efficiency of rf-optical interactions is predicted to be large when the rf frequency corresponds to the spacing between two optical modes.

Fig. 4.
Fig. 4.

Shift in mode frequencies as a function of PZT voltage. Two discreet tuning rates are apparent, corresponding to mode families (green squares and blue circles) with different radial modal indices.

Fig. 5.
Fig. 5.

Top-down schematic of the method used to produce a geometric deformation along the resonator equator. A glass plate was pressed against the resonator equator at the position opposite the diamond prism.

Fig. 6.
Fig. 6.

Side-view schematic of the deformation. The two arrows represent white light that is incident at the interface between the glass plate and the resonator surface. The reflected interference pattern is imaged and used to calculate the size of the deformation, characterized in units of nanometers in the y-axis of (Fig. ??). The gap between the prism and the resonator edge was maintained to ensure critical coupling throughout the application of strain.

Fig. 7.
Fig. 7.

Change in circular symmetric WGM frequencies through squeezing. Modes 1 and 3 correspond to radial index of 1 with even (ℓ − m) index. Modes 4 and 6 have the same (ℓ − m) index, but larger radial index than modes 1 and 3. Modes 2 and 5 have tuning rate of zero, corresponding to an odd (ℓ − m) index. The y-axis ranges from zero to 250 nm.

Fig. 8.
Fig. 8.

The frequency shift of two mode families as a function of applied strain. Mode family 1 (blue circles) and 2 (yellow squares) tune at the same rate in region I of Fig. 2. In region II, the tuning rates diverge. The same tuning rate, equal to the rate in region I, is recovered. Red diamonds are residuals of the two tuning rates. The size of the deformation was calculated from measurements of the far field diffraction pattern of the prism-resonator interface.

Tables (1)

Tables Icon

Table 1. Discrete tuning rates of the modes

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ v v = Δ r r Δ n n + ( m ) ( Δ e ) 2
Δ v v = Δ n n = 1 2 n 2 r ij · V T

Metrics