Abstract

We report the experimental demonstration of optical stretching of individual bio-concave human red blood cells (RBCs) with one-dimensional jumping optical tweezers. We trapped a RBC in isotonic buffer solution in a conventional stationary single-beam gradient-force optical trap and discretely scanned the trapping beam with an acousto-optic modulator such that the focal point of the trapping beam jumped back-and-forth between two fixed points. At the jumping frequency on the order of a 100 Hz and higher, and the jumping distance in the range of a few microns, the biconcave RBC was stably trapped and stretched. The elongation of the stretched RBC was measured as a function of the beam-scanning amplitude, and the experimental results were explained qualitatively by a theoretical model.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. Bao and S. Suresh, "Cell and molecular mechanics of biological materials," Nat. Maters. 2, 715-725 (2003).
    [CrossRef]
  2. J. Guck, R. Ananthakrishnan, H. Mahmood, J. T. Moon, C. C. Cunninghan, and J. Kas, "The optical stretcher: a novel laser tool to micromanipulate cells," Biophys. J. 81, 767-784 (2001).
    [CrossRef] [PubMed]
  3. A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of single cell using infrared laser beams," Nature 330, 769-771 (1987).
    [CrossRef] [PubMed]
  4. L. P. Ghislain and W. W. Webb, "Scanning-force microscope based on an optical trap," Opt. Lett. 18, 1678-1680 (1993).
    [CrossRef] [PubMed]
  5. E.-L. Florin, A. Pralle, E. H. K. Stelzer, and. J. K. H. Horber, "Photonic force microscope calibration by thermal noise analysis," Appl. Phys. A 66, 75-78 (1998).
    [CrossRef]
  6. M. T. Wei and A , Chiou, "Three-dimensional tracking of Brownian motion of a particle trapped in optical tweezers with a pair of orthogonal tracking beams and the determination of the associated optical force constants," Opt. Express 13, 5798-5806 (2005).
    [CrossRef] [PubMed]
  7. M. T. Wei, K.-T. Yang, A. Karmenyan, and A , Chiou, "Three-dimensional optical force field on a Chinese hamster ovary cell in a fiber-optical dual-beam trap," Opt. Express 14, 3056-3064 (2006).
    [CrossRef] [PubMed]
  8. M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, "An automated two-dimensional optical force clamp for single molecule studies," Biophys. J. 83, 491-501 (2002).
    [CrossRef] [PubMed]
  9. S. L. Liu, A. Karmenyan, M. T. Wei, C. C, Huang, C, H, Lin, and A, Chiou, "Optical forced oscillation for the study of lectin-glycoprotein interaction at the cellular membrane of a Chinese hamster ovary cell," Opt. Express 15, 2713-2723 (2007).
    [CrossRef] [PubMed]
  10. M. T. Wei, K. F. Hua, J. Hsu, A. Karmenyan, K. Y. Tseng, C. H. Wong, H. Y. Hsu, and A , Chiou, "The interaction of lipopolysaccharides with membrane receptors on macrophages pre-treated with extract of Reshi polysaccharides measured by optical tweezers," Opt. Express 15, 11020-11032 (2007).
    [CrossRef] [PubMed]
  11. P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and Brakenhoff, "A new method to study shape recovery of red blood cells using multiple optical trapping," Biophys. J. 69, 1666-1673 (1995).
    [CrossRef] [PubMed]
  12. S. He’non, G. Lenormand, A. Richert, and F. Gallet, "A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers," Biophys. J. 76, 1145-1151 (1999).
    [CrossRef]
  13. J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and Mathur, "Natually occurring, optically driven,cellular rotor," Appl. Phys. Lett. 85, 6048-6050 (2004).
    [CrossRef]
  14. J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and Mathur, "Torque-generating malaria infected red blood cells in an optical trap," Opt. Express 12, 1179-1184 (2004).
    [CrossRef] [PubMed]
  15. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, Daniel Mitchell, J. Kas, S. Ulvick, and Curt Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
    [CrossRef] [PubMed]
  16. M. Gu, S. Kuriakose, and X. Gan, "A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes," Opt. Express 15, 1369-1375 (2007).
    [CrossRef] [PubMed]
  17. M. Gu, J.-B. Haumonte, Y. Micheau, and J. W. M. Chon, "Laser trapping and mainpulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236-4238 (2004).
    [CrossRef]
  18. P. H. Jones, E. Stride, and N. Saffari, "Trapping and manipulation of microscopic bubbles with a scanning optical tweezer," Appl. Phys. Lett. 89, 081113 (2006).
    [CrossRef]
  19. L. A. Hough and H. D. Ou-Yang, "A new probe for mechanical testing of nanostructures in soft materials," J. Nanopart. Res. 1, 495-499 (1999).
    [CrossRef]
  20. W. G. Lee, H. Bang, J. Park, S. Chung, K. Cho, C. Chung, D.-C. Han, and J. K. Chang, "Combined microchannel-type erythrocyte deformability test with optical tweezers," Proc. SPIE. 6088, 608813-1-12 (2006).
    [CrossRef]
  21. P. B. Bareil, Y. Sheng, and A. Chiou, "Local stress distribution on the surface of a spherical cell in an optical stretcher," Opt. Express 14, 12503-12509 (2006).
    [CrossRef]

2007 (3)

2006 (3)

2005 (2)

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, Daniel Mitchell, J. Kas, S. Ulvick, and Curt Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

M. T. Wei and A , Chiou, "Three-dimensional tracking of Brownian motion of a particle trapped in optical tweezers with a pair of orthogonal tracking beams and the determination of the associated optical force constants," Opt. Express 13, 5798-5806 (2005).
[CrossRef] [PubMed]

2004 (3)

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and Mathur, "Natually occurring, optically driven,cellular rotor," Appl. Phys. Lett. 85, 6048-6050 (2004).
[CrossRef]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and Mathur, "Torque-generating malaria infected red blood cells in an optical trap," Opt. Express 12, 1179-1184 (2004).
[CrossRef] [PubMed]

M. Gu, J.-B. Haumonte, Y. Micheau, and J. W. M. Chon, "Laser trapping and mainpulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236-4238 (2004).
[CrossRef]

2003 (1)

G. Bao and S. Suresh, "Cell and molecular mechanics of biological materials," Nat. Maters. 2, 715-725 (2003).
[CrossRef]

2002 (1)

M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, "An automated two-dimensional optical force clamp for single molecule studies," Biophys. J. 83, 491-501 (2002).
[CrossRef] [PubMed]

2001 (1)

J. Guck, R. Ananthakrishnan, H. Mahmood, J. T. Moon, C. C. Cunninghan, and J. Kas, "The optical stretcher: a novel laser tool to micromanipulate cells," Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

1999 (2)

L. A. Hough and H. D. Ou-Yang, "A new probe for mechanical testing of nanostructures in soft materials," J. Nanopart. Res. 1, 495-499 (1999).
[CrossRef]

S. He’non, G. Lenormand, A. Richert, and F. Gallet, "A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers," Biophys. J. 76, 1145-1151 (1999).
[CrossRef]

1998 (1)

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and. J. K. H. Horber, "Photonic force microscope calibration by thermal noise analysis," Appl. Phys. A 66, 75-78 (1998).
[CrossRef]

1995 (1)

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and Brakenhoff, "A new method to study shape recovery of red blood cells using multiple optical trapping," Biophys. J. 69, 1666-1673 (1995).
[CrossRef] [PubMed]

1993 (1)

1987 (1)

A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of single cell using infrared laser beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

Appl. Phys. A (1)

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and. J. K. H. Horber, "Photonic force microscope calibration by thermal noise analysis," Appl. Phys. A 66, 75-78 (1998).
[CrossRef]

Appl. Phys. Lett. (3)

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and Mathur, "Natually occurring, optically driven,cellular rotor," Appl. Phys. Lett. 85, 6048-6050 (2004).
[CrossRef]

M. Gu, J.-B. Haumonte, Y. Micheau, and J. W. M. Chon, "Laser trapping and mainpulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236-4238 (2004).
[CrossRef]

P. H. Jones, E. Stride, and N. Saffari, "Trapping and manipulation of microscopic bubbles with a scanning optical tweezer," Appl. Phys. Lett. 89, 081113 (2006).
[CrossRef]

Biophys. J. (5)

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, Daniel Mitchell, J. Kas, S. Ulvick, and Curt Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, J. T. Moon, C. C. Cunninghan, and J. Kas, "The optical stretcher: a novel laser tool to micromanipulate cells," Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, "An automated two-dimensional optical force clamp for single molecule studies," Biophys. J. 83, 491-501 (2002).
[CrossRef] [PubMed]

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and Brakenhoff, "A new method to study shape recovery of red blood cells using multiple optical trapping," Biophys. J. 69, 1666-1673 (1995).
[CrossRef] [PubMed]

S. He’non, G. Lenormand, A. Richert, and F. Gallet, "A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers," Biophys. J. 76, 1145-1151 (1999).
[CrossRef]

J. Nanopart. Res. (1)

L. A. Hough and H. D. Ou-Yang, "A new probe for mechanical testing of nanostructures in soft materials," J. Nanopart. Res. 1, 495-499 (1999).
[CrossRef]

Nat. Maters. (1)

G. Bao and S. Suresh, "Cell and molecular mechanics of biological materials," Nat. Maters. 2, 715-725 (2003).
[CrossRef]

Nature (1)

A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of single cell using infrared laser beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

Opt. Express (7)

M. T. Wei and A , Chiou, "Three-dimensional tracking of Brownian motion of a particle trapped in optical tweezers with a pair of orthogonal tracking beams and the determination of the associated optical force constants," Opt. Express 13, 5798-5806 (2005).
[CrossRef] [PubMed]

M. T. Wei, K.-T. Yang, A. Karmenyan, and A , Chiou, "Three-dimensional optical force field on a Chinese hamster ovary cell in a fiber-optical dual-beam trap," Opt. Express 14, 3056-3064 (2006).
[CrossRef] [PubMed]

S. L. Liu, A. Karmenyan, M. T. Wei, C. C, Huang, C, H, Lin, and A, Chiou, "Optical forced oscillation for the study of lectin-glycoprotein interaction at the cellular membrane of a Chinese hamster ovary cell," Opt. Express 15, 2713-2723 (2007).
[CrossRef] [PubMed]

M. T. Wei, K. F. Hua, J. Hsu, A. Karmenyan, K. Y. Tseng, C. H. Wong, H. Y. Hsu, and A , Chiou, "The interaction of lipopolysaccharides with membrane receptors on macrophages pre-treated with extract of Reshi polysaccharides measured by optical tweezers," Opt. Express 15, 11020-11032 (2007).
[CrossRef] [PubMed]

M. Gu, S. Kuriakose, and X. Gan, "A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes," Opt. Express 15, 1369-1375 (2007).
[CrossRef] [PubMed]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and Mathur, "Torque-generating malaria infected red blood cells in an optical trap," Opt. Express 12, 1179-1184 (2004).
[CrossRef] [PubMed]

P. B. Bareil, Y. Sheng, and A. Chiou, "Local stress distribution on the surface of a spherical cell in an optical stretcher," Opt. Express 14, 12503-12509 (2006).
[CrossRef]

Opt. Lett. (1)

Other (1)

W. G. Lee, H. Bang, J. Park, S. Chung, K. Cho, C. Chung, D.-C. Han, and J. K. Chang, "Combined microchannel-type erythrocyte deformability test with optical tweezers," Proc. SPIE. 6088, 608813-1-12 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

A schematic diagram of the experimental setup.

Fig. 2.
Fig. 2.

The side-view of a bi-concave RBC trapped and stretched by jumping optical tweezers where the trapping beam (with optical power = 12 mW) was discretely scanned by the AOM at 100 Hz such that its focal spot jumped between two fixed points. From (1) to (6), the beam-scanning amplitude D = 1.23 μm, 1.59 μm, 1.95 μm, 2.31 μm, 2.67 μm, and 3.03 μm, respectively. The error bars show the standard root-mean-square deviation of the cell length measured from 9 images of the same cell under the same experimental condition.

Fig. 3.
Fig. 3.

(a). RBC modeled as a perfect bi-concave platelet; (b) the intersection of its largest circumference with the x-y plane in the reference coordinate system.

Fig 4.
Fig 4.

Relative force distribution on the circumference of a RBC (modeled as a bi-concave platelet of its largest circumference of radius ρ = 4μm) at different beam-scanning amplitude D, for D = 1 μm (blue), 2 μm (black), and 3 μm (red). (a) a polar representation; (b) Relative force distribution on the cell as a function of polar angle in the 1st quadrant.

Fig. 5.
Fig. 5.

The net Qx (red color) and Qy (blue color), calculated from Eq. (2) by integrating over ϕ and normalizing, as a function of the beam-scanning amplitude.

Fig. 6.
Fig. 6.

The length of a RBC along the scanning direction as a function of the beam-scanning amplitude for the case where a slight decrease in length was observed at small D (as is predicted by our theory).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ = P i ( P t + P r ) A Δ t = 1 c E i A Δ t n 1 ( a i ( n T a t + R a r ) ) n 1 c 𝖯 A Q
Q Y = exp ( ρ cos ( ϕ ) D ) 2 w 2 [ cos ( δ + ϕ ) nT ( δ ) cos ( β + ϕ ) + R ( δ ) cos ( ϕ δ ) ] Q X = exp ( ρ cos ( ϕ ) D ) 2 w 2 [ -sin ( δ + ϕ ) + nT ( δ ) sin ( β + ϕ ) R ( δ ) sin ( ϕ δ ) ] Q = [ Q X 2 + Q Y 2 ] 1 2

Metrics