Abstract

We report the near-field observation of the phase shifts associated with total internal reflection on a glass-air interface and surface plasmon resonance on a glass-gold-air system. The phase of the evanescent waves on glass and gold surfaces, as a function of incident angle, is measured using a phase-sensitive Photon Scanning Tunneling Microscope (PSTM) and shows a good agreement with theory.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. I. Newton, Opticks (William Innys, London, 1704).
  2. N. J. Harrick, Internal reflection spectroscopy (Interscience Publishers, New York (0-470-35250-7) 1967).
  3. R. C. Reddick, R. J. Warmack, and T. L. Ferrell, "New form of scanning optical microscopy," Phys. Rev. B 39 (1989).
    [CrossRef]
  4. A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Near-field optics: from subwavelength illumination to nanometric shadowing," Nature Biotechnol. 21 (2003).
    [CrossRef]
  5. R Quidant, J.C. Webber, A. Dereux, D. Payrade, Y. Chen, and G. Girard, "Near-field observation of evanescent light wave coupling in subwavelength optical waveguides," Europhys. Lett. 57 (2002).
    [CrossRef]
  6. F. Goos and H. H¨anschen, "Ein neuer und fundamentales versuch zur total reflexion," Ann.Phys 1 (1947).
  7. R. H. Ritchie, "Plasma losses by fast electrons in thin films," Phys. Rev. 1 (1957).
  8. S. G. Nelson, K. S. Johnston, and S. S. Yee, "High sensitivity surface plasmon resonance sensor based on phase detection," Sens. Actuators B 35 (1996).
    [CrossRef]
  9. S. A. Shen, T. Liu, and J. H. Guo, "Optical phase-shift detection of surface plasmon resonance," Appl. Opt. 37 (1998).
    [CrossRef]
  10. V.E. Kochergin, A.A. Beloglazov, M.V. Valeiko, and P.I. Nikitin, "Phase properties of a surface-plasmon resonance from the viewpoint of sensor applications," Quantum Electron. 28 (1998).
    [CrossRef]
  11. F. Pillon, H. Gilles, S. Girard, M. Laroche, and O. Emile, "Transverse displacement at total reflection near the grazing angle: a way to discriminate between theories," Appl. Phys. B 80 (2005).
    [CrossRef]
  12. H. P. Ho,W.W. Lam, and S. Y. Wu, "Surface plasmon resonance sensor based on the measurement of differential phase," Rev. Sci. Instrum. 732002.
    [CrossRef]
  13. X. B. Yin and L. Hesselink, "Goos-hanchen shift surface plasmon resonance sensor," Appl. Phys. Lett. 89 (2006).
    [CrossRef]
  14. C. F. Li, T. Duan, and X. Y. Yang, "Giant Goos-Hanchen displacement enhanced by dielectric film in frustrated total internal reflection configuration," J. Appl. Phys. 101 (2007).
    [CrossRef]
  15. P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, "Surface plasmon resonance interferometry for biological and chemical sensing," Sens. Actuators B 54 (1999).
    [CrossRef]
  16. H. P. Chiang, J. L. Lin, and Z. W. Chen, "High sensitivity surface plasmon resonance sensor based on phase interrogation at optimal incident wavelengths," Appl. Phys. Lett. 88 (2006).
    [CrossRef]
  17. K. M. Medicus, M. Chaney, J. E. Brodziak, and A. Davies, "Interferometric measurement of phase change on reflection," Appl. Opt. 46 (2007).
    [CrossRef] [PubMed]
  18. S. Kaiser, T. Maier, A. Grossmann, and C. Zimmermann, "Fizeau interferometer for phase shifting interferometry in ultrahigh vacuum," Rev. Sci. Instrum. 72 (2001).
    [CrossRef]
  19. E Kretschmann and H Raether, "Radiative deacy of nonradiative surface plasmons excited by light," Z.Naturforsch.A 23 (1968).
  20. E. Hecht. Optics (Addison Wesley (0-201-83887-7) 1998).
  21. C.K. Carniglia and L. Mandel, "Phase-shift measurement of evanescent electromagnetic waves," J. Opt. Soc. Am. 61 (1971).
    [CrossRef]
  22. K. Kiersnowski, L. Jozefowski, and T. Dohnalik, "Effective optical anisotropy in evanescent wave propagation in atomic vapor," Phys. Rev. A 57 (1998).
    [CrossRef]
  23. H. Raether. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin (3-540-17363-3) 1988).
  24. F. deFornel, P. M. Adam, L. Salomon, J. P. Goudonnet, A. Sentenac, R. Carminati, and J. J. Greffet, "Analysis of image formation with a photon scanning tunneling microscope," J. Opt. Soc. Am. A 13 (1996).
  25. M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Local observations of phase singularities in optical fields in waveguide structures," Phys. Rev. Lett. 85 (2000).
    [CrossRef] [PubMed]
  26. P. Mazur and B. Djafarirouhani, "Effect of surface-polaritons on the lateral displacement of a light-beam at a dielectric interface," Phys. Rev. B 30 (1984).
    [CrossRef]

2007 (2)

C. F. Li, T. Duan, and X. Y. Yang, "Giant Goos-Hanchen displacement enhanced by dielectric film in frustrated total internal reflection configuration," J. Appl. Phys. 101 (2007).
[CrossRef]

K. M. Medicus, M. Chaney, J. E. Brodziak, and A. Davies, "Interferometric measurement of phase change on reflection," Appl. Opt. 46 (2007).
[CrossRef] [PubMed]

2006 (2)

H. P. Chiang, J. L. Lin, and Z. W. Chen, "High sensitivity surface plasmon resonance sensor based on phase interrogation at optimal incident wavelengths," Appl. Phys. Lett. 88 (2006).
[CrossRef]

X. B. Yin and L. Hesselink, "Goos-hanchen shift surface plasmon resonance sensor," Appl. Phys. Lett. 89 (2006).
[CrossRef]

2005 (1)

F. Pillon, H. Gilles, S. Girard, M. Laroche, and O. Emile, "Transverse displacement at total reflection near the grazing angle: a way to discriminate between theories," Appl. Phys. B 80 (2005).
[CrossRef]

2003 (1)

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Near-field optics: from subwavelength illumination to nanometric shadowing," Nature Biotechnol. 21 (2003).
[CrossRef]

2002 (2)

R Quidant, J.C. Webber, A. Dereux, D. Payrade, Y. Chen, and G. Girard, "Near-field observation of evanescent light wave coupling in subwavelength optical waveguides," Europhys. Lett. 57 (2002).
[CrossRef]

H. P. Ho,W.W. Lam, and S. Y. Wu, "Surface plasmon resonance sensor based on the measurement of differential phase," Rev. Sci. Instrum. 732002.
[CrossRef]

2001 (1)

S. Kaiser, T. Maier, A. Grossmann, and C. Zimmermann, "Fizeau interferometer for phase shifting interferometry in ultrahigh vacuum," Rev. Sci. Instrum. 72 (2001).
[CrossRef]

2000 (1)

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Local observations of phase singularities in optical fields in waveguide structures," Phys. Rev. Lett. 85 (2000).
[CrossRef] [PubMed]

1999 (1)

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, "Surface plasmon resonance interferometry for biological and chemical sensing," Sens. Actuators B 54 (1999).
[CrossRef]

1998 (3)

S. A. Shen, T. Liu, and J. H. Guo, "Optical phase-shift detection of surface plasmon resonance," Appl. Opt. 37 (1998).
[CrossRef]

V.E. Kochergin, A.A. Beloglazov, M.V. Valeiko, and P.I. Nikitin, "Phase properties of a surface-plasmon resonance from the viewpoint of sensor applications," Quantum Electron. 28 (1998).
[CrossRef]

K. Kiersnowski, L. Jozefowski, and T. Dohnalik, "Effective optical anisotropy in evanescent wave propagation in atomic vapor," Phys. Rev. A 57 (1998).
[CrossRef]

1996 (2)

F. deFornel, P. M. Adam, L. Salomon, J. P. Goudonnet, A. Sentenac, R. Carminati, and J. J. Greffet, "Analysis of image formation with a photon scanning tunneling microscope," J. Opt. Soc. Am. A 13 (1996).

S. G. Nelson, K. S. Johnston, and S. S. Yee, "High sensitivity surface plasmon resonance sensor based on phase detection," Sens. Actuators B 35 (1996).
[CrossRef]

1989 (1)

R. C. Reddick, R. J. Warmack, and T. L. Ferrell, "New form of scanning optical microscopy," Phys. Rev. B 39 (1989).
[CrossRef]

1984 (1)

P. Mazur and B. Djafarirouhani, "Effect of surface-polaritons on the lateral displacement of a light-beam at a dielectric interface," Phys. Rev. B 30 (1984).
[CrossRef]

1971 (1)

C.K. Carniglia and L. Mandel, "Phase-shift measurement of evanescent electromagnetic waves," J. Opt. Soc. Am. 61 (1971).
[CrossRef]

1968 (1)

E Kretschmann and H Raether, "Radiative deacy of nonradiative surface plasmons excited by light," Z.Naturforsch.A 23 (1968).

1957 (1)

R. H. Ritchie, "Plasma losses by fast electrons in thin films," Phys. Rev. 1 (1957).

1947 (1)

F. Goos and H. H¨anschen, "Ein neuer und fundamentales versuch zur total reflexion," Ann.Phys 1 (1947).

Ann.Phys (1)

F. Goos and H. H¨anschen, "Ein neuer und fundamentales versuch zur total reflexion," Ann.Phys 1 (1947).

Appl. Opt. (2)

S. A. Shen, T. Liu, and J. H. Guo, "Optical phase-shift detection of surface plasmon resonance," Appl. Opt. 37 (1998).
[CrossRef]

K. M. Medicus, M. Chaney, J. E. Brodziak, and A. Davies, "Interferometric measurement of phase change on reflection," Appl. Opt. 46 (2007).
[CrossRef] [PubMed]

Appl. Phys. B (1)

F. Pillon, H. Gilles, S. Girard, M. Laroche, and O. Emile, "Transverse displacement at total reflection near the grazing angle: a way to discriminate between theories," Appl. Phys. B 80 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

X. B. Yin and L. Hesselink, "Goos-hanchen shift surface plasmon resonance sensor," Appl. Phys. Lett. 89 (2006).
[CrossRef]

H. P. Chiang, J. L. Lin, and Z. W. Chen, "High sensitivity surface plasmon resonance sensor based on phase interrogation at optimal incident wavelengths," Appl. Phys. Lett. 88 (2006).
[CrossRef]

Europhys. Lett. (1)

R Quidant, J.C. Webber, A. Dereux, D. Payrade, Y. Chen, and G. Girard, "Near-field observation of evanescent light wave coupling in subwavelength optical waveguides," Europhys. Lett. 57 (2002).
[CrossRef]

J. Appl. Phys. (1)

C. F. Li, T. Duan, and X. Y. Yang, "Giant Goos-Hanchen displacement enhanced by dielectric film in frustrated total internal reflection configuration," J. Appl. Phys. 101 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

C.K. Carniglia and L. Mandel, "Phase-shift measurement of evanescent electromagnetic waves," J. Opt. Soc. Am. 61 (1971).
[CrossRef]

J. Opt. Soc. Am. A (1)

F. deFornel, P. M. Adam, L. Salomon, J. P. Goudonnet, A. Sentenac, R. Carminati, and J. J. Greffet, "Analysis of image formation with a photon scanning tunneling microscope," J. Opt. Soc. Am. A 13 (1996).

Nature Biotechnol. (1)

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Near-field optics: from subwavelength illumination to nanometric shadowing," Nature Biotechnol. 21 (2003).
[CrossRef]

Phys. Rev. (1)

R. H. Ritchie, "Plasma losses by fast electrons in thin films," Phys. Rev. 1 (1957).

Phys. Rev. A (1)

K. Kiersnowski, L. Jozefowski, and T. Dohnalik, "Effective optical anisotropy in evanescent wave propagation in atomic vapor," Phys. Rev. A 57 (1998).
[CrossRef]

Phys. Rev. B (2)

P. Mazur and B. Djafarirouhani, "Effect of surface-polaritons on the lateral displacement of a light-beam at a dielectric interface," Phys. Rev. B 30 (1984).
[CrossRef]

R. C. Reddick, R. J. Warmack, and T. L. Ferrell, "New form of scanning optical microscopy," Phys. Rev. B 39 (1989).
[CrossRef]

Phys. Rev. Lett. (1)

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Local observations of phase singularities in optical fields in waveguide structures," Phys. Rev. Lett. 85 (2000).
[CrossRef] [PubMed]

Quantum Electron. (1)

V.E. Kochergin, A.A. Beloglazov, M.V. Valeiko, and P.I. Nikitin, "Phase properties of a surface-plasmon resonance from the viewpoint of sensor applications," Quantum Electron. 28 (1998).
[CrossRef]

Rev. Sci. Instrum. (2)

H. P. Ho,W.W. Lam, and S. Y. Wu, "Surface plasmon resonance sensor based on the measurement of differential phase," Rev. Sci. Instrum. 732002.
[CrossRef]

S. Kaiser, T. Maier, A. Grossmann, and C. Zimmermann, "Fizeau interferometer for phase shifting interferometry in ultrahigh vacuum," Rev. Sci. Instrum. 72 (2001).
[CrossRef]

Sens. Actuators B (2)

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, "Surface plasmon resonance interferometry for biological and chemical sensing," Sens. Actuators B 54 (1999).
[CrossRef]

S. G. Nelson, K. S. Johnston, and S. S. Yee, "High sensitivity surface plasmon resonance sensor based on phase detection," Sens. Actuators B 35 (1996).
[CrossRef]

Z.Naturforsch.A (1)

E Kretschmann and H Raether, "Radiative deacy of nonradiative surface plasmons excited by light," Z.Naturforsch.A 23 (1968).

Other (4)

E. Hecht. Optics (Addison Wesley (0-201-83887-7) 1998).

I. Newton, Opticks (William Innys, London, 1704).

N. J. Harrick, Internal reflection spectroscopy (Interscience Publishers, New York (0-470-35250-7) 1967).

H. Raether. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin (3-540-17363-3) 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic illustration of our approach (b) Calculated phase change with respect to incoming beam obtained from the Fresnel’s coefficients as a function of incident angle for both a glass-air interface (squares) and a glass-gold-air system (circles). The abrupt variation in phase change for the p-polarized incident beam in the glass-gold-air system (red) is due to the excitation of surface plasmons.θc is the critical angle of incidence for TIR on the glass-air interface

Fig. 2.
Fig. 2.

Schematic diagram of the phase-sensitive PSTM with the sample placed on top of a glass hemispherical prism (side view). SB - signal branch, RB - reference branch

Fig. 3.
Fig. 3.

A PSTM measurement of the glass-gold transition region of the sample for a scan area of 24.1×14.8µm 2 for an s-polarized incident beam. (a) Topography, (b) phase of the local field expressed as optical amplitude times sine of the phase, (c) the measured amplitude of the optical field, (d) a line trace on the sample along the black dashed line in image (c). The images were obtained using a coated fiber tip.

Fig. 4.
Fig. 4.

PSTM images for a p-polarized incident beam and a scan area of 60×6.4µm 2. (a) Topography, (b-e) the sine of the spatial phase for different incident angles (b)42.2°,(c)42.7°,(d)43.3°,(e)43.6°. The images were obtained using a coated fiber tip.

Fig. 5.
Fig. 5.

(a) Comparison between the theoretical and experimental phase difference as a function of incident angle for p- and s- polarized light. (b) Comparison between far-field reflectivity and near-field PSTM measurements for p- and s- polarized incident beams.

Metrics