Abstract

A fiber strain sensor based on a π-phase-shifted Bragg grating and an extended cavity diode laser is proposed. Locking the laser frequency to grating resonance by the Pound-Drever-Hall technique results in a strain power spectral density S ε(f)=(3×10−19 f −1+2.6×10−23)ε 2/Hz in the Fourier frequency range from 1 kHz to 10 MHz (ε being the applied strain), corresponding to a minimum sensitivity of 5 pεHz−1/2 for frequencies larger than 100 kHz.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Othenos and K. Kalli, Fiber Bragg grating: Fundamental and applications in telecommunications and sensing. Norwood: Artech House, 1999.
  2. Y. J. Rao and S. Huang, "Applications of fiber optic sensors," in Fiber Optic Sensors, F. T. S. Yu and S. Yin eds. Marcel Dekker, New York, Basel, 2002.
  3. N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, "Ultrasonic Hydrophone Based on Short In-Fiber Bragg Gratings, " Appl. Opt. 37,8120-8128 (1998).
    [CrossRef]
  4. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15,1442-1463 (1997).
    [CrossRef]
  5. P. Ferraro and P. De Natale, "On the possible use of optical fiber Bragg gratings as strain sensors for geodynamical monitoring," Opt. Laser Eng. 37,115-130 (2002).
    [CrossRef]
  6. J. H. Chow, I. C. M. Littler, G. de Vine, D. E. McClelland, and M. B. Gray, "Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications," J. Lightwave Technol. 23, 1881-1886 (2005).
    [CrossRef]
  7. J. H. Chow, D. E. McClelland, M. B. Gray, and I. C. M. Littler, "Demonstration of a passive subpicostrain fiber strain sensor," Opt. Lett. 30, 1923-1925 (2005).
    [CrossRef] [PubMed]
  8. M. LeBlanc, A. D. Kersey, and T. E. Tsai, "Sub-nanostrain strain measurements using a π-phase shifted grating," in Optical Fiber Sensors, vol. 16 OSA Technical Digest Series (Optical Society of America, 1997), 28-30.
  9. M. LeBlanc, S. T. Vohra, T. E. Tsai, and E. J. Friebele, "Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings," Opt. Lett. 24, 1091-1093 (1999).
    [CrossRef]
  10. A. M. Gillooly, H. Dobb, L. Zhang, and I. Bennion, "Distributed load sensor by use of a chirped Moir fiber Bragg grating," Appl. Opt. 43,6454-6457 (2004).
    [CrossRef] [PubMed]
  11. S. C. Tjin, L. Mohanty, and N. Q. Ngo, "Pressure sensing with embedded chirped fiber grating," Opt. Commun. 216,115-118 (2003).
    [CrossRef]
  12. X. W. Shu, K. Chisholm, I. Felmeri, K. Sugden, A. Gillooly, L. Zhang, and I. Bennion, "Highly sensitive transverse load sensing with reversible sampled fiber Bragg gratings," Appl. Phys. Lett. 83,3003-3005 (2003).
    [CrossRef]
  13. R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31,97-105 (1983).
    [CrossRef]
  14. A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, "A writing technique for long fibre Bragg gratings with complex reflectivity profiles," J. Lightwave Technol. 15, 1419-1423 (1997).
    [CrossRef]
  15. S. Longhi, D. Janner, G. Galzerano, G. Della Valle, D. Gatti, and P. Laporta, "Optical buffering in phase-shifted fiber gratings" Electron. Lett. 41,1075-1076 (2005).
    [CrossRef]
  16. D. S. Elliott, R. Roy, and S. J. Smith "Extracavity laser band-shape and bandwidth modification," Phys. Rev. A 26,12-26 (1982).
    [CrossRef]

2005 (3)

2004 (1)

2003 (2)

S. C. Tjin, L. Mohanty, and N. Q. Ngo, "Pressure sensing with embedded chirped fiber grating," Opt. Commun. 216,115-118 (2003).
[CrossRef]

X. W. Shu, K. Chisholm, I. Felmeri, K. Sugden, A. Gillooly, L. Zhang, and I. Bennion, "Highly sensitive transverse load sensing with reversible sampled fiber Bragg gratings," Appl. Phys. Lett. 83,3003-3005 (2003).
[CrossRef]

2002 (1)

P. Ferraro and P. De Natale, "On the possible use of optical fiber Bragg gratings as strain sensors for geodynamical monitoring," Opt. Laser Eng. 37,115-130 (2002).
[CrossRef]

1999 (1)

1998 (1)

1997 (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15,1442-1463 (1997).
[CrossRef]

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, "A writing technique for long fibre Bragg gratings with complex reflectivity profiles," J. Lightwave Technol. 15, 1419-1423 (1997).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31,97-105 (1983).
[CrossRef]

1982 (1)

D. S. Elliott, R. Roy, and S. J. Smith "Extracavity laser band-shape and bandwidth modification," Phys. Rev. A 26,12-26 (1982).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31,97-105 (1983).
[CrossRef]

Appl. Phys. Lett. (1)

X. W. Shu, K. Chisholm, I. Felmeri, K. Sugden, A. Gillooly, L. Zhang, and I. Bennion, "Highly sensitive transverse load sensing with reversible sampled fiber Bragg gratings," Appl. Phys. Lett. 83,3003-3005 (2003).
[CrossRef]

Electron. Lett. (1)

S. Longhi, D. Janner, G. Galzerano, G. Della Valle, D. Gatti, and P. Laporta, "Optical buffering in phase-shifted fiber gratings" Electron. Lett. 41,1075-1076 (2005).
[CrossRef]

J. Lightwave Technol. (3)

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, "A writing technique for long fibre Bragg gratings with complex reflectivity profiles," J. Lightwave Technol. 15, 1419-1423 (1997).
[CrossRef]

J. H. Chow, I. C. M. Littler, G. de Vine, D. E. McClelland, and M. B. Gray, "Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications," J. Lightwave Technol. 23, 1881-1886 (2005).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15,1442-1463 (1997).
[CrossRef]

Opt. Commun. (1)

S. C. Tjin, L. Mohanty, and N. Q. Ngo, "Pressure sensing with embedded chirped fiber grating," Opt. Commun. 216,115-118 (2003).
[CrossRef]

Opt. Laser Eng. (1)

P. Ferraro and P. De Natale, "On the possible use of optical fiber Bragg gratings as strain sensors for geodynamical monitoring," Opt. Laser Eng. 37,115-130 (2002).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

D. S. Elliott, R. Roy, and S. J. Smith "Extracavity laser band-shape and bandwidth modification," Phys. Rev. A 26,12-26 (1982).
[CrossRef]

Other (3)

M. LeBlanc, A. D. Kersey, and T. E. Tsai, "Sub-nanostrain strain measurements using a π-phase shifted grating," in Optical Fiber Sensors, vol. 16 OSA Technical Digest Series (Optical Society of America, 1997), 28-30.

A. Othenos and K. Kalli, Fiber Bragg grating: Fundamental and applications in telecommunications and sensing. Norwood: Artech House, 1999.

Y. J. Rao and S. Huang, "Applications of fiber optic sensors," in Fiber Optic Sensors, F. T. S. Yu and S. Yin eds. Marcel Dekker, New York, Basel, 2002.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Measured transmission spectrum of the 3-cm long π-phase-shifted FBG.

Fig. 2.
Fig. 2.

PDH experimental setup using an ECDL and a π-phase-shifted FBG. PZT: piezoelectric transducer; λ/2: half-wave plate for input polarization control; DBM: doubled-balanced mixer.

Fig. 3.
Fig. 3.

(a) Measured FBG reflection signal at the output of the transimpedance amplifier versus frequency detuning (10 kHz measurement bandwidth). (b) Demodulated reflection signal at the output of DBM versus frequency detuning (10 MHz measurement bandwidth). In (b), the dotted curve represents the linear interpolation of the recorded trace around the resonance center frequency, corresponding to a discriminator slope of 32 nV/Hz.

Fig. 4.
Fig. 4.

Measured power spectral density of the voltage signal at the output of the doubledbalanced mixer. The right vertical axis shows the converted power spectral density of the strain, Sε (f), using eq.(2) and assuming D=32 nV/Hz, K=0.78, and νB =194 THz. Red dotted line is the best polynomial noise interpolation of the power spectral density for f≥1 kHz; blue dashed line represents the electronic noise floor.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ λ B λ B = Δ v B v B = K ε ,
S ε ( f ) = S Δ v ( f ) ( v B K ) 2 = S V ( f ) ( v B KD ) 2 [ ε 2 Hz ]

Metrics