Abstract

We report a novel type of active fiber – tapered double clad fiber suitable for pumping by low brightness sources with large beam parameter product of 50÷300 mm×mrad. Ytterbium double clad all-silica fiber (core/1st clad/2nd clad diameters 27/834/890 µm, NAcore=0.11, NAclad=0.21), tapered down by a factor 4.8 for a length of 10.5 m was drawn from a preform fabricated by plasma chemical technologies. At a moderate Yb-ion concentration and 1:31 core/cladding ratio, the tapered double clad fiber demonstrates 0.9 dB/m pump absorption at 976 nm and excellent lasing slope efficiency. An ytterbium fiber laser with 84 W of output power and 92% slope efficiency, a 74 W superfluorescent source with 85% slope efficiency and amplifiers operating both in CW and pulsed regimes have been realized. All devices demonstrated robust single mode operation with a beam quality factor of M2=1.07.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. www.ipgphotonics.com
  2. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004).
    [CrossRef] [PubMed]
  3. D. Young and C. Roychoudhuri, "Results and comparison of a cladding pumped fiber simulation using a decagon-shaped fiber," Opt. Express 11, 830-837 (2003).
    [CrossRef] [PubMed]
  4. J. J. Koponen, M. J. Soderlund, H. J. Hoffman, and S. K. Tammela, "Measuring photodarkening from single-mode ytterbium doped silica fibers," Opt. Express 14, 11539-11544 (2006).
    [CrossRef] [PubMed]
  5. B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J-P. Martin, and J-P. de Sandro, "Low photodarkening single cladding ytterbium fiber amplifier," Proc. SPIE 6453, 64530H-1-64530H-9 (2007).
    [CrossRef]
  6. S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, "Photodarkening in Yb-doped aluminosilicate fibers induced by 488nm irradiation," Opt. Lett. 32, 1626-1628 (2007).
    [CrossRef] [PubMed]
  7. J. Kirchhof, S. Unger, V. Reichel, and A. Schwuchow, "Background loss and devitrification in Nd-doped fiber laser glass," Optical Fiber Conference Technical Digest, 60-61 (1996).
  8. P. Koplow, D. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442-444 (2000).
    [CrossRef]
  9. J. Limpert, N. Deguil-Robin, I. Manek-Honninger, F. Salin, F. Roser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tunnermann, J. Broeng, A. Petersson, and C. Jacobsen, "High-power rod-type photonic crystal fiber laser," Opt. Express 13, 1055-1058 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-4-1055
    [CrossRef] [PubMed]
  10. J. Limpert, O. Schmidt, J. Rothhardt, F. Roser, T. Schreiber, A. Tunnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber lasers," Opt. Express 14, 2715-2720 (2006).
    [CrossRef] [PubMed]
  11. A. Liu and K. Ueda, "The absorption characteristics of circular, offset, and rectangular double-clad fibers," Optics Commun. 132, 511-518 (1996).
    [CrossRef]
  12. P. Leproux, S. Fevrier, V. Doya, P. Roy, and D. Pagnoux, "Modeling and optimization of double-clad fiber amplifiers using chaotic propagation of pump," Opt. Fiber Technol. 6, 324-339 (2001).
    [CrossRef]
  13. V. Doya, O. Legrand, and F. Mortessagne, "Optimized absorption in a chaotic double-clad fiber amplifier," Opt. Lett. 26,872-874 (2001).
    [CrossRef]
  14. D. Kouznetsov, J. Moloney, and E. Wright, "Efficiency of pump absorption in double-clad fiber amplifiers. I. Fiber with circular symmetry," J. Opt. Soc. Am. B 18, 743-749 (2001).
    [CrossRef]
  15. D. Kouznetsov and J. Moloney, "Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry," J. Opt. Soc. Am. B 19, 1259-1263 (2002).
    [CrossRef]
  16. D. Kouznetsov and J. Moloney, "Efficiency of pump absorption in double-clad fiber amplifiers. III. Calculation of modes," J. Opt. Soc. Am. B 19, 1304-1309 (2002).
    [CrossRef]
  17. H. Po, "Ring core fiber," PCT patent WO 02/079829 A1.
  18. H. Po, "Optical fiber," PCT patent WO 03/010578 A1.
  19. A. Carter, K. Tankala, and N. Jacobson, "Cladding-pumped optical fiber," US patent 6.625.363 B2
  20. M. Fermann, "Single-mode excitation of multimode fibers with ultrashort pulses," Opt. Lett. 23,52-54 (1998).
    [CrossRef]
  21. A. Carter, K. Tankala, and M. Seifert, "Double-clad optical fiber for lasers and amplifiers," US patent 6.687.445 B2.
  22. D. Marcuse, "Coupled power equations for lossy fibers," Appl. Opt. 17, 3232-3237 (1978).
    [CrossRef] [PubMed]
  23. J. Nilsson, S.-U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, "High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers," IEEE J. Quantum Electron. 39, 987-994 (2003).
    [CrossRef]
  24. D. Marcuse, Light Transmission Optics, (Van Nostrand Reinhold Company, New York, 1972), Chap. 9.
  25. E. M. Dianov, K. M. Golant, V. I. Karpov, R. R. Khrapko, A. S. Kurkov, V. N. Protopopov, S. L. Semenov and A. G. Shebuniaev, "Application of reduced-pressure plasma CVD technology to the fabrication of Er-doped optical fibers," Opt. Mater. 3, 181-185 (1994).
    [CrossRef]
  26. A. C. Boucouvalas and G. Georgiou, "External refractive-index response of tapered coaxial couplers," Opt. Lett. 11, 257-259, (1986).
    [CrossRef] [PubMed]
  27. K. Kieu and M. Mansuripur, "Tuning of fiber lasers by use of a single-mode biconic fiber taper," Opt. Lett. 31, 2435-2437 (2006).
    [CrossRef] [PubMed]
  28. S. A. Kingsley and D. E. N. Davies, "Multimode optical-fibre phase modulators and discriminators: I-Theory," Electron. Lett. 14, 322-324 (1978).
    [CrossRef]
  29. V. B. Veinberg and D. K. Sattarov, Waveguide Optics, (Mashinostroenie, Leningrad, 1977), Chap.5 (in Russian).
  30. N. S. Kapany and J. J. Burke, Optical Waveguides, (Academic Press, New York, 1972).
  31. P. Wang and W. A. Clarkson, "High-power, single mode, linearly polarized, ytterbium-doped fiber superfluorescent source," Opt. Lett. 32, 2605-2607 (2007).
    [CrossRef] [PubMed]
  32. O. G. Okhotnikov and J. M. Sousa, "Flared single-transverse-mode fiber amplifier," Electron. Lett. 35, 1011-1013, (1999).
    [CrossRef]
  33. A. Liem, J. Limpert, H. Zellmer, and A. Tunnermann, "100-W single-frequency master-oscillator fiber power amplifier," Opt. Lett. 28, 1537-1539, (2003).
    [CrossRef] [PubMed]
  34. Y. Jeong, J. Nilsson, J. Sahu, D. Payne, R. Horley, L. Hickey, and P. Turner, "Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500W," IEEE J. Sel. Top. Quantum Electron. 13,546-551 (2007).
    [CrossRef]
  35. V. I. Kovalev and R. G. Harrison, "Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers," Opt. Lett. 31, 161-163 (2006).
    [CrossRef] [PubMed]
  36. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson and S. N. Knudsen, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution," J. Lightwave Technol. 19,1691-1697 (2001).
    [CrossRef]
  37. K. Shiraki, M. Ohashi, and M. Tateda, "Suppression of stimulated Brillouin scattering in a fiber by changing the core radius," Electron. Lett. 31, 668-669 (1995).
    [CrossRef]
  38. http://www.laserline.de/

2007

2006

2005

2004

2003

2002

2001

2000

1999

O. G. Okhotnikov and J. M. Sousa, "Flared single-transverse-mode fiber amplifier," Electron. Lett. 35, 1011-1013, (1999).
[CrossRef]

1998

1996

A. Liu and K. Ueda, "The absorption characteristics of circular, offset, and rectangular double-clad fibers," Optics Commun. 132, 511-518 (1996).
[CrossRef]

1995

K. Shiraki, M. Ohashi, and M. Tateda, "Suppression of stimulated Brillouin scattering in a fiber by changing the core radius," Electron. Lett. 31, 668-669 (1995).
[CrossRef]

1994

E. M. Dianov, K. M. Golant, V. I. Karpov, R. R. Khrapko, A. S. Kurkov, V. N. Protopopov, S. L. Semenov and A. G. Shebuniaev, "Application of reduced-pressure plasma CVD technology to the fabrication of Er-doped optical fibers," Opt. Mater. 3, 181-185 (1994).
[CrossRef]

1986

1978

D. Marcuse, "Coupled power equations for lossy fibers," Appl. Opt. 17, 3232-3237 (1978).
[CrossRef] [PubMed]

S. A. Kingsley and D. E. N. Davies, "Multimode optical-fibre phase modulators and discriminators: I-Theory," Electron. Lett. 14, 322-324 (1978).
[CrossRef]

Appl. Opt.

Electron. Lett.

S. A. Kingsley and D. E. N. Davies, "Multimode optical-fibre phase modulators and discriminators: I-Theory," Electron. Lett. 14, 322-324 (1978).
[CrossRef]

O. G. Okhotnikov and J. M. Sousa, "Flared single-transverse-mode fiber amplifier," Electron. Lett. 35, 1011-1013, (1999).
[CrossRef]

K. Shiraki, M. Ohashi, and M. Tateda, "Suppression of stimulated Brillouin scattering in a fiber by changing the core radius," Electron. Lett. 31, 668-669 (1995).
[CrossRef]

IEEE J. Quantum Electron.

J. Nilsson, S.-U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, "High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers," IEEE J. Quantum Electron. 39, 987-994 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y. Jeong, J. Nilsson, J. Sahu, D. Payne, R. Horley, L. Hickey, and P. Turner, "Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500W," IEEE J. Sel. Top. Quantum Electron. 13,546-551 (2007).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Opt. Fiber Technol.

P. Leproux, S. Fevrier, V. Doya, P. Roy, and D. Pagnoux, "Modeling and optimization of double-clad fiber amplifiers using chaotic propagation of pump," Opt. Fiber Technol. 6, 324-339 (2001).
[CrossRef]

Opt. Lett.

Opt. Mater.

E. M. Dianov, K. M. Golant, V. I. Karpov, R. R. Khrapko, A. S. Kurkov, V. N. Protopopov, S. L. Semenov and A. G. Shebuniaev, "Application of reduced-pressure plasma CVD technology to the fabrication of Er-doped optical fibers," Opt. Mater. 3, 181-185 (1994).
[CrossRef]

Optics Commun.

A. Liu and K. Ueda, "The absorption characteristics of circular, offset, and rectangular double-clad fibers," Optics Commun. 132, 511-518 (1996).
[CrossRef]

Other

H. Po, "Ring core fiber," PCT patent WO 02/079829 A1.

H. Po, "Optical fiber," PCT patent WO 03/010578 A1.

A. Carter, K. Tankala, and N. Jacobson, "Cladding-pumped optical fiber," US patent 6.625.363 B2

www.ipgphotonics.com

J. Kirchhof, S. Unger, V. Reichel, and A. Schwuchow, "Background loss and devitrification in Nd-doped fiber laser glass," Optical Fiber Conference Technical Digest, 60-61 (1996).

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J-P. Martin, and J-P. de Sandro, "Low photodarkening single cladding ytterbium fiber amplifier," Proc. SPIE 6453, 64530H-1-64530H-9 (2007).
[CrossRef]

http://www.laserline.de/

V. B. Veinberg and D. K. Sattarov, Waveguide Optics, (Mashinostroenie, Leningrad, 1977), Chap.5 (in Russian).

N. S. Kapany and J. J. Burke, Optical Waveguides, (Academic Press, New York, 1972).

A. Carter, K. Tankala, and M. Seifert, "Double-clad optical fiber for lasers and amplifiers," US patent 6.687.445 B2.

D. Marcuse, Light Transmission Optics, (Van Nostrand Reinhold Company, New York, 1972), Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

T-DCF: the optical equivalent scheme

Fig. 2.
Fig. 2.

T-DCF clad diameter and normalized frequency as function of fiber length.

Fig. 3.
Fig. 3.

Transmission characteristic of T-DCF: from wide end towards narrow end (black line) and in the opposite direction (red line).

Fig. 4.
Fig. 4.

Ray traces in a cladding of T-DCF.

Fig. 5.
Fig. 5.

Schematics of optical sources with T-DCF.

Fig. 6.
Fig. 6.

Output characteristics of T-DCF laser with R1,2=4%;4%. (a) Output power versus absorbed pump power; Inset : emission spectra for output 1 (black line) and output 2 (red line). (b): beam profile (dots) and Gaussian fit (red line) for output 1. M2=1.07.

Fig. 7.
Fig. 7.

Output characteristics of T-DCF laser with broadband HR mirror: (a) output power versus absorbed pump power (b) spectrum of output radiation.

Fig. 8.
Fig. 8.

Output characteristics of T-DCF laser with FBG : (a) output power versus absorbed pump power (b) spectrum of output radiation.

Fig. 9.
Fig. 9.

Output characteristics of T-DCF superluminescent source: (a) output power versus absorbed pump power (b) spectrum of output radiation.

Fig. 10.
Fig. 10.

Amplifier with T-DCF: experimental set up

Fig. 11.
Fig. 11.

Output characteristics of T-DCF pulsed amplifier : (a) average output power versus launched pump power (circles); inset : seed source spectrum (black line) and amplified signal spectrum (red line). (b) autocorrelation function of seed signal (black line) and amplified signal (red line).

Fig. 12.
Fig. 12.

Output characteristics of T-DCF amplifier with CW seed signal: a. output power versus launched pump power (black circles); inset: seed source spectrum (black line) and amplified signal spectrum (red line). b. back reflected light power as a function of output power.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α DCfiber = α core · A core A clad
α DCfiber = α core · A core A clad · S
NA right = d 2 d · NA core θ n 2 core NA core 2 · ( d 2 d ) 2 and
NA left = d 1 d · NA core + θ n 2 core NA core 2 · ( d 1 d ) 2 ,
NA right NA left = d 2 d 1
NA clad = D 2 D 1 · NA Ω n 2 clad 1 NA 2 · ( D 2 D 1 ) 2 ,

Metrics