J. B. Schneider, “Plane waves in FDTD simulations and a nearly perfect total-field/scattered-field boundary” IEEE Trans. Antennas Propag. 52, 3280–3287 (2004).

[CrossRef]

C.-W. Lee, K. Kim, J. Noh, and W. Jhe, “Quantum theory of amplified total internal reflection due to evanescentmode coupling,” Phys. Rev. A 62, 053805 (2000).

[CrossRef]

Z. Wang, Z. Zhang, Z. Xu, and Q. Lin, “Space-time profiles of an ultrashort pulsed Gaussian beam,” IEEE J. Quantum Electron. 33, 566–573 (1997).

[CrossRef]

S. A. Lebedev, V. M. Volkov, and B. Ya. Kogan, “Value of the gain for light internally reflected from a medium with inverted population,” Opt. Spectrosc. 35, 976–977 (1973).

G. N. Romanov and S. S. Shakhidzhanov, “Amplification of electromagnetic field in total internal reflection from a region of inverted population,” JETP 16, 298–301 (1972).

C. J. Koester, “Laser action by enhanced total internal reflection,” IEEE J. Quantum Electron. 2, 580–584 (1966).

[CrossRef]

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1964).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, 1991).

C.-W. Lee, K. Kim, J. Noh, and W. Jhe, “Quantum theory of amplified total internal reflection due to evanescentmode coupling,” Phys. Rev. A 62, 053805 (2000).

[CrossRef]

C.-W. Lee, K. Kim, J. Noh, and W. Jhe, “Quantum theory of amplified total internal reflection due to evanescentmode coupling,” Phys. Rev. A 62, 053805 (2000).

[CrossRef]

C. J. Koester, “Laser action by enhanced total internal reflection,” IEEE J. Quantum Electron. 2, 580–584 (1966).

[CrossRef]

S. A. Lebedev, V. M. Volkov, and B. Ya. Kogan, “Value of the gain for light internally reflected from a medium with inverted population,” Opt. Spectrosc. 35, 976–977 (1973).

S. A. Lebedev, V. M. Volkov, and B. Ya. Kogan, “Value of the gain for light internally reflected from a medium with inverted population,” Opt. Spectrosc. 35, 976–977 (1973).

C.-W. Lee, K. Kim, J. Noh, and W. Jhe, “Quantum theory of amplified total internal reflection due to evanescentmode coupling,” Phys. Rev. A 62, 053805 (2000).

[CrossRef]

Z. Wang, Z. Zhang, Z. Xu, and Q. Lin, “Space-time profiles of an ultrashort pulsed Gaussian beam,” IEEE J. Quantum Electron. 33, 566–573 (1997).

[CrossRef]

C.-W. Lee, K. Kim, J. Noh, and W. Jhe, “Quantum theory of amplified total internal reflection due to evanescentmode coupling,” Phys. Rev. A 62, 053805 (2000).

[CrossRef]

D. J. Robinson and J. B. Schneider, “On the use of the geometric mean in FDTD near-to-far-field transformations” to appear in IEEE Trans. Antennas Propag. (2007).

[CrossRef]

G. N. Romanov and S. S. Shakhidzhanov, “Amplification of electromagnetic field in total internal reflection from a region of inverted population,” JETP 16, 298–301 (1972).

J. B. Schneider, “Plane waves in FDTD simulations and a nearly perfect total-field/scattered-field boundary” IEEE Trans. Antennas Propag. 52, 3280–3287 (2004).

[CrossRef]

D. J. Robinson and J. B. Schneider, “On the use of the geometric mean in FDTD near-to-far-field transformations” to appear in IEEE Trans. Antennas Propag. (2007).

[CrossRef]

G. N. Romanov and S. S. Shakhidzhanov, “Amplification of electromagnetic field in total internal reflection from a region of inverted population,” JETP 16, 298–301 (1972).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

S. A. Lebedev, V. M. Volkov, and B. Ya. Kogan, “Value of the gain for light internally reflected from a medium with inverted population,” Opt. Spectrosc. 35, 976–977 (1973).

Z. Wang, Z. Zhang, Z. Xu, and Q. Lin, “Space-time profiles of an ultrashort pulsed Gaussian beam,” IEEE J. Quantum Electron. 33, 566–573 (1997).

[CrossRef]

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1964).

Z. Wang, Z. Zhang, Z. Xu, and Q. Lin, “Space-time profiles of an ultrashort pulsed Gaussian beam,” IEEE J. Quantum Electron. 33, 566–573 (1997).

[CrossRef]

Z. Wang, Z. Zhang, Z. Xu, and Q. Lin, “Space-time profiles of an ultrashort pulsed Gaussian beam,” IEEE J. Quantum Electron. 33, 566–573 (1997).

[CrossRef]

C. J. Koester, “Laser action by enhanced total internal reflection,” IEEE J. Quantum Electron. 2, 580–584 (1966).

[CrossRef]

Z. Wang, Z. Zhang, Z. Xu, and Q. Lin, “Space-time profiles of an ultrashort pulsed Gaussian beam,” IEEE J. Quantum Electron. 33, 566–573 (1997).

[CrossRef]

J. B. Schneider, “Plane waves in FDTD simulations and a nearly perfect total-field/scattered-field boundary” IEEE Trans. Antennas Propag. 52, 3280–3287 (2004).

[CrossRef]

G. N. Romanov and S. S. Shakhidzhanov, “Amplification of electromagnetic field in total internal reflection from a region of inverted population,” JETP 16, 298–301 (1972).

S. A. Lebedev, V. M. Volkov, and B. Ya. Kogan, “Value of the gain for light internally reflected from a medium with inverted population,” Opt. Spectrosc. 35, 976–977 (1973).

C.-W. Lee, K. Kim, J. Noh, and W. Jhe, “Quantum theory of amplified total internal reflection due to evanescentmode coupling,” Phys. Rev. A 62, 053805 (2000).

[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1964).

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, 1991).

D. J. Robinson and J. B. Schneider, “On the use of the geometric mean in FDTD near-to-far-field transformations” to appear in IEEE Trans. Antennas Propag. (2007).

[CrossRef]