Abstract

The near-infrared emission intensity of Ni2+ in Yb3+/Ni2+ codoped transparent MgO-Al2O3-Ga2O3-SiO2-TiO2 glass ceramics could be enhanced up to 4.4 times via energy transfer from Yb3+ to Ni2+ in nanocrystals. The best Yb2O3 concentration was about 1.00 mol%. For the Yb3+/Ni2+ codoped glass ceramic with 1.00 mol% Yb2O3, a broadband near-infrared emission centered at 1265 nm with full width at half maximum of about 300 nm and lifetime of about 220 µs was observed. The energy transfer mechanism was also discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. L. Dexter, "A theory of sensitized luminescence in solids," J. Chem. Phys. 21, 836-850 (1953).
    [CrossRef]
  2. B. N. Samson, L. R. Pinckney, J. Wang, G. H. Beall, and N. F. Borrelli, "Nickel-doped nanocrystalline glass-ceramics fiber," Opt. Lett. 27, 1309-1311 (2002).
    [CrossRef]
  3. T. Suzuki, G. S. Murugan, and Y. Ohishi, "Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals," Appl. Phys. Lett. 86, 131903-1-3 (2005).
    [CrossRef]
  4. T. Suzuki, K. Horibuchi and Y. Ohishi, "Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics containing Ni2+-doped nanocrystals", J. Non-Crystal.Solids 351, 2304-2309 (2005).
    [CrossRef]
  5. B. Wu, S. Zhou, J. Ren, D. Chen, X. Jiang, C. Zhu, J. Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals," Appl. Phys. B 87, 697-699 (2007).
    [CrossRef]
  6. B. Wu, N. Jiang, S. Zhou, D. Chen, C. Zhu, J. Qiu, "Transparent Ni2+-doped silicate glass ceramics for broadband near-infrared emission," Opt. Mater. (Accepted).
  7. B. Henderson and G. F. Imbusch, Optical spectroscopy of Inorganic Solids (Oxford University Press, New York, 1989).
  8. A. Yoshikawa, G. Boulon, L. Laversenne, H. Ganibano, K. Lebbou, A. Collombet, Y. Guyot, "Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals," J. Appl. Phys. 94, 5479-5488 (2003).
    [CrossRef]
  9. C. Yan, G. Zhao, L. Zhang, J. Xu, X. Liang, D. Juan, W. Li, H. Pan, L. Ding, H. Zeng, "A new Yb-doped oxyorthosilicate laser crystal: Yb:Gd2SiO5," Solid State Commun. 137, 451-455 (2006).
    [CrossRef]
  10. K. Lu and N. K. Dutta, "Spectroscopic properties of Yb-doped silica glass," J. Appl. Phys. 91, 576-581 (2002).
    [CrossRef]
  11. W. G. Quirino, M.J. V. Bell, S. L. Oliveira, L. A. O. Nunes, "Effects of non-radiative processes on the infrared luminescence of Yb3+ doped glasses," J. Non-Cryst. Solids 351, 2044-2048 (2005)
    [CrossRef]
  12. R. T. Brundage and W. M. Yen, "Energy transfer among Yb3+ ions in a silicate glass," Phys. Rev. B 34, 8810-8814 (1986).
    [CrossRef]
  13. S. Heer, M. Weruth, K. Krämer, H. U. Güdel, "Sharp 2E upconversion luminescence of Cr3+ in Y3Ga5O12 codoped with Cr3+ and Yb3+," Phys. Rew. B 65, 125112-1-10 (2002).
    [CrossRef]
  14. R. Valiente, O. S. Wenger, H. U. Güdel, "Upconversion luminescence in Yb3+ doped CsMnCl3: Spectroscopy, dynamics, and mechanisms," J. Chem. Phys. 116, 5196-5204 (2002).
    [CrossRef]
  15. S. García-Revilla, P. Gerner, H. U. Güdel, R. Valiente, "Yb3+-sensitized visible Ni2+ photon upconversion in codoped CsCdBr3 and CsMgBr3," Phys. Rew. B 72, 125111-1-9 (2005).
    [CrossRef]
  16. X. Xu, Z. Zhao, P. Song, G. Zhou, J. Xu, P. Deng, "Infrared (1.2-1.6 μm) luminescence in Yb, Cr:YAG with 940 nm diode pumping," Mat. Sci. Eng. B 117, 17-20 (2005).
    [CrossRef]
  17. G. Blasse and B. C. Grabmaier, Luminescence Materials (Springer-Verlag, Berlin, 1994).
    [CrossRef]

2007 (1)

B. Wu, S. Zhou, J. Ren, D. Chen, X. Jiang, C. Zhu, J. Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals," Appl. Phys. B 87, 697-699 (2007).
[CrossRef]

2006 (1)

C. Yan, G. Zhao, L. Zhang, J. Xu, X. Liang, D. Juan, W. Li, H. Pan, L. Ding, H. Zeng, "A new Yb-doped oxyorthosilicate laser crystal: Yb:Gd2SiO5," Solid State Commun. 137, 451-455 (2006).
[CrossRef]

2005 (5)

T. Suzuki, G. S. Murugan, and Y. Ohishi, "Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals," Appl. Phys. Lett. 86, 131903-1-3 (2005).
[CrossRef]

T. Suzuki, K. Horibuchi and Y. Ohishi, "Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics containing Ni2+-doped nanocrystals", J. Non-Crystal.Solids 351, 2304-2309 (2005).
[CrossRef]

W. G. Quirino, M.J. V. Bell, S. L. Oliveira, L. A. O. Nunes, "Effects of non-radiative processes on the infrared luminescence of Yb3+ doped glasses," J. Non-Cryst. Solids 351, 2044-2048 (2005)
[CrossRef]

S. García-Revilla, P. Gerner, H. U. Güdel, R. Valiente, "Yb3+-sensitized visible Ni2+ photon upconversion in codoped CsCdBr3 and CsMgBr3," Phys. Rew. B 72, 125111-1-9 (2005).
[CrossRef]

X. Xu, Z. Zhao, P. Song, G. Zhou, J. Xu, P. Deng, "Infrared (1.2-1.6 μm) luminescence in Yb, Cr:YAG with 940 nm diode pumping," Mat. Sci. Eng. B 117, 17-20 (2005).
[CrossRef]

2003 (1)

A. Yoshikawa, G. Boulon, L. Laversenne, H. Ganibano, K. Lebbou, A. Collombet, Y. Guyot, "Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals," J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

2002 (4)

K. Lu and N. K. Dutta, "Spectroscopic properties of Yb-doped silica glass," J. Appl. Phys. 91, 576-581 (2002).
[CrossRef]

B. N. Samson, L. R. Pinckney, J. Wang, G. H. Beall, and N. F. Borrelli, "Nickel-doped nanocrystalline glass-ceramics fiber," Opt. Lett. 27, 1309-1311 (2002).
[CrossRef]

S. Heer, M. Weruth, K. Krämer, H. U. Güdel, "Sharp 2E upconversion luminescence of Cr3+ in Y3Ga5O12 codoped with Cr3+ and Yb3+," Phys. Rew. B 65, 125112-1-10 (2002).
[CrossRef]

R. Valiente, O. S. Wenger, H. U. Güdel, "Upconversion luminescence in Yb3+ doped CsMnCl3: Spectroscopy, dynamics, and mechanisms," J. Chem. Phys. 116, 5196-5204 (2002).
[CrossRef]

1986 (1)

R. T. Brundage and W. M. Yen, "Energy transfer among Yb3+ ions in a silicate glass," Phys. Rev. B 34, 8810-8814 (1986).
[CrossRef]

1953 (1)

D. L. Dexter, "A theory of sensitized luminescence in solids," J. Chem. Phys. 21, 836-850 (1953).
[CrossRef]

Appl. Phys. B (1)

B. Wu, S. Zhou, J. Ren, D. Chen, X. Jiang, C. Zhu, J. Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals," Appl. Phys. B 87, 697-699 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

T. Suzuki, G. S. Murugan, and Y. Ohishi, "Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals," Appl. Phys. Lett. 86, 131903-1-3 (2005).
[CrossRef]

J. Appl. Phys. (2)

A. Yoshikawa, G. Boulon, L. Laversenne, H. Ganibano, K. Lebbou, A. Collombet, Y. Guyot, "Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals," J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

K. Lu and N. K. Dutta, "Spectroscopic properties of Yb-doped silica glass," J. Appl. Phys. 91, 576-581 (2002).
[CrossRef]

J. Chem. Phys. (2)

R. Valiente, O. S. Wenger, H. U. Güdel, "Upconversion luminescence in Yb3+ doped CsMnCl3: Spectroscopy, dynamics, and mechanisms," J. Chem. Phys. 116, 5196-5204 (2002).
[CrossRef]

D. L. Dexter, "A theory of sensitized luminescence in solids," J. Chem. Phys. 21, 836-850 (1953).
[CrossRef]

J. Non-Cryst. Solids (1)

W. G. Quirino, M.J. V. Bell, S. L. Oliveira, L. A. O. Nunes, "Effects of non-radiative processes on the infrared luminescence of Yb3+ doped glasses," J. Non-Cryst. Solids 351, 2044-2048 (2005)
[CrossRef]

Mat. Sci. Eng. B (1)

X. Xu, Z. Zhao, P. Song, G. Zhou, J. Xu, P. Deng, "Infrared (1.2-1.6 μm) luminescence in Yb, Cr:YAG with 940 nm diode pumping," Mat. Sci. Eng. B 117, 17-20 (2005).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

B. Wu, N. Jiang, S. Zhou, D. Chen, C. Zhu, J. Qiu, "Transparent Ni2+-doped silicate glass ceramics for broadband near-infrared emission," Opt. Mater. (Accepted).

Phys. Rev. B (1)

R. T. Brundage and W. M. Yen, "Energy transfer among Yb3+ ions in a silicate glass," Phys. Rev. B 34, 8810-8814 (1986).
[CrossRef]

Phys. Rew. B (2)

S. Heer, M. Weruth, K. Krämer, H. U. Güdel, "Sharp 2E upconversion luminescence of Cr3+ in Y3Ga5O12 codoped with Cr3+ and Yb3+," Phys. Rew. B 65, 125112-1-10 (2002).
[CrossRef]

S. García-Revilla, P. Gerner, H. U. Güdel, R. Valiente, "Yb3+-sensitized visible Ni2+ photon upconversion in codoped CsCdBr3 and CsMgBr3," Phys. Rew. B 72, 125111-1-9 (2005).
[CrossRef]

Solid State Commun. (1)

C. Yan, G. Zhao, L. Zhang, J. Xu, X. Liang, D. Juan, W. Li, H. Pan, L. Ding, H. Zeng, "A new Yb-doped oxyorthosilicate laser crystal: Yb:Gd2SiO5," Solid State Commun. 137, 451-455 (2006).
[CrossRef]

Solids (1)

T. Suzuki, K. Horibuchi and Y. Ohishi, "Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics containing Ni2+-doped nanocrystals", J. Non-Crystal.Solids 351, 2304-2309 (2005).
[CrossRef]

Other (2)

B. Henderson and G. F. Imbusch, Optical spectroscopy of Inorganic Solids (Oxford University Press, New York, 1989).

G. Blasse and B. C. Grabmaier, Luminescence Materials (Springer-Verlag, Berlin, 1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

XRD patterns of Yb3+/Ni2+ codoped MAGST GCs with different Yb2O3 concentration (mol%): (a) 0, (b) 0.25, (c) 0.50, (d) 0.75, (e) 1.00 and (f) 1.25. The inset shows the dependence of nanocrystal size and crystallinity of GCs on Yb2O3 concentration.

Fig. 2.
Fig. 2.

Absorption spectra of Ni2+-doped and Yb3+/Ni2+ codoped MAGST GCs (0.3 mol% NiO and 1.00 mol% Yb2O3) and emission spectra of Yb3+ in MAGST GC (1.00 mol% Yb2O3) with 980 nm LD excitation.

Fig. 3.
Fig. 3.

Emission spectra of 1.00mol% Yb2O3 doped MAGST glass and GC excited by 980 nm LD.

Fig. 4.
Fig. 4.

Emission spectra of Ni2+ (solid line), Yb3+ (short dash line) and Yb3+/Ni2+ (short dot line) -doped MAGST GCs excited by 980 nm LD, and the inset shows the dependence of the integrated intensity of Ni2+ emission on the Yb2O3 concentration.

Fig. 5.
Fig. 5.

Dependence of fluorescence lifetime of Ni2+ in Yb3+/Ni2+ codoped MAGST GCs and Yb3+ in Yb3+ single-doped and Yb3+/Ni2+ codoped MAGST GCs and FWHM of Ni2+ emission on Yb2O3 concentration.

Fig. 6.
Fig. 6.

Energy level diagram of Yb3+/Ni2+ codoped MAGST GCs which exhibits Yb3+→Ni2+ energy transfer (ET). Dashed and solid lines indicate the respective nonradiative and radiative processes.

Metrics