Abstract

A real-time polarization control system employing two non-orthogonal reference signals multiplexed in either time or wavelength with the data signal is presented. It is shown, theoretically and experimentally, that complete control of multiple polarization states can be attained employing polarization controllers in closed-loop configuration. Experimental results on the wavelength multiplexing setup show that negligible added penalties, corresponding to an average added optical Quantum Bit Error Rate of 0.044%, can be achieved with response times smaller than 10 ms, without significant introduction of noise counts in the quantum channel.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Active polarization stabilization in optical fibers suitable for quantum key distribution

Jie Chen, Guang Wu, Yao Li, E. Wu, and Heping Zeng
Opt. Express 15(26) 17928-17936 (2007)

High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber

Hannes Hübel, Michael R. Vanner, Thomas Lederer, Bibiane Blauensteiner, Thomas Lorünser, Andreas Poppe, and Anton Zeilinger
Opt. Express 15(12) 7853-7862 (2007)

Detection and compensation of basis deviation in satellite-to-ground quantum communications

Ming Zhang, Liang Zhang, Jincai Wu, Shiji Yang, Xiong Wan, Zhiping He, Jianjun Jia, D. S. Citrin, and Jianyu Wang
Opt. Express 22(8) 9871-9886 (2014)

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, J. P. von der Weid, and J. P. Pellaux, “Polarization mode dispersion in long and short single mode fibers,” J. Lightwave Tech. 9, 821–827 (1991).
    [Crossref]
  2. M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communication systems,” J. Lightwave Technol. 24, 4172–4183 (2006).
    [Crossref]
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  4. C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang X.-B. Wang, and J.-W. Pan, “Experimental Long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
    [Crossref]
  5. S. Sauge, M. Swillo, S. Albert-Seifried, G. B. Xavier, J. Waldebäck, M. Tengner, D. Ljunggren, and A. Karlsson, “Narrowband polarization-entangled photon pairs distributed over a WDM link for qubit networks,” Opt. Express,  15, 6926–6933 (2007).
    [Crossref] [PubMed]
  6. B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones Matrix Eigenanalysis”. IEEE Photon. Technol. Lett. 4, 1066–1069 (1992).
    [Crossref]

2007 (2)

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang X.-B. Wang, and J.-W. Pan, “Experimental Long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

S. Sauge, M. Swillo, S. Albert-Seifried, G. B. Xavier, J. Waldebäck, M. Tengner, D. Ljunggren, and A. Karlsson, “Narrowband polarization-entangled photon pairs distributed over a WDM link for qubit networks,” Opt. Express,  15, 6926–6933 (2007).
[Crossref] [PubMed]

2006 (1)

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

1992 (1)

B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones Matrix Eigenanalysis”. IEEE Photon. Technol. Lett. 4, 1066–1069 (1992).
[Crossref]

1991 (1)

N. Gisin, J. P. von der Weid, and J. P. Pellaux, “Polarization mode dispersion in long and short single mode fibers,” J. Lightwave Tech. 9, 821–827 (1991).
[Crossref]

Albert-Seifried, S.

Gao, W.-B.

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang X.-B. Wang, and J.-W. Pan, “Experimental Long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

N. Gisin, J. P. von der Weid, and J. P. Pellaux, “Polarization mode dispersion in long and short single mode fibers,” J. Lightwave Tech. 9, 821–827 (1991).
[Crossref]

Heffner, B. L.

B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones Matrix Eigenanalysis”. IEEE Photon. Technol. Lett. 4, 1066–1069 (1992).
[Crossref]

Karlsson, A.

Ljunggren, D.

Ma, H.-X.

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang X.-B. Wang, and J.-W. Pan, “Experimental Long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

Martelli, P.

Martinelli, M.

Pan, J.-W.

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang X.-B. Wang, and J.-W. Pan, “Experimental Long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

Pellaux, J. P.

N. Gisin, J. P. von der Weid, and J. P. Pellaux, “Polarization mode dispersion in long and short single mode fibers,” J. Lightwave Tech. 9, 821–827 (1991).
[Crossref]

Peng, C.-Z.

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang X.-B. Wang, and J.-W. Pan, “Experimental Long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

Pietralunga, S. M.

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Sauge, S.

Swillo, M.

Tengner, M.

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

von der Weid, J. P.

N. Gisin, J. P. von der Weid, and J. P. Pellaux, “Polarization mode dispersion in long and short single mode fibers,” J. Lightwave Tech. 9, 821–827 (1991).
[Crossref]

Waldebäck, J.

Wang, T. Yang X.-B.

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang X.-B. Wang, and J.-W. Pan, “Experimental Long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

Xavier, G. B.

Yang, D.

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang X.-B. Wang, and J.-W. Pan, “Experimental Long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

Yin, H.

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang X.-B. Wang, and J.-W. Pan, “Experimental Long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Zeng, H.-P.

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang X.-B. Wang, and J.-W. Pan, “Experimental Long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

Zhang, J.

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang X.-B. Wang, and J.-W. Pan, “Experimental Long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones Matrix Eigenanalysis”. IEEE Photon. Technol. Lett. 4, 1066–1069 (1992).
[Crossref]

J. Lightwave Tech. (1)

N. Gisin, J. P. von der Weid, and J. P. Pellaux, “Polarization mode dispersion in long and short single mode fibers,” J. Lightwave Tech. 9, 821–827 (1991).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (1)

Phys. Rev. Lett. (1)

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang X.-B. Wang, and J.-W. Pan, “Experimental Long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental set-up: PC: Manual polarization controllers, R: Electrically driven polarization controllers, P: Polarizers, F: Filter, D: Classical photodetectors, C: Single photon counting module, LD: Laser diodes, A: Attenuator, Pol: Polarimeter.

Fig. 2.
Fig. 2.

Signal recovery in channel 2 controlled by channels 1 and 3.

Fig. 3.
Fig. 3.

Left: uncontrolled time evolution of a single output SOP. Right: evolution of two nonorthogonal output SOPs with full control.

Fig. 4.
Fig. 4.

(a). Statistics of the deviation angle between the received and target SOP in the Poincaré sphere. (b). Corresponding added power penalties under full polarization control.

Fig. 5.
Fig. 5.

Single photon counts at Bob for two fixed polarization states (linear 0° and 45°) sent by Alice controlling the polarization through 8.5 km single mode fiber.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

{ R 1 T S 1 = S 1 R 3 S 1 = S 1 R 3 R 1 T S 3 = S 3
R 1 = ( 1 0 0 e j ϕ ) T 1 , R 3 = ( 1 0 0 e j θ )
( 1 0 0 e j ( θ + ϕ ) ) ( 1 1 ) = ( 1 1 )
{ R 1 T ( ω 1 ) S 1 = S 1 R 3 S 1 = S 1 R 3 R 1 T ( ω 3 ) S 3 = S 3
( 1 0 0 e j ( θ + ϕ ) ) ( I + 2 Δ ω T 1 T ω ) ( 1 1 ) = ( 1 1 )
2 Δ ω T 1 T ω 1

Metrics