Abstract

A polarizer-free flexible and reflective electro-optical switch using dye-doped liquid crystal (LC) gels is demonstrated. The electro-optical performances of both scattering and absorption based dye-doped LC gels depend on curing temperatures due to domain sizes of polymer networks. Such flexible electro-optical switch is bendable and trim-able because of the vertical polymer networks and gel-like materials. The dye-doped LC gel shows good reflectance ~55%, good contrast ratio~450:1 and fast response~6.4ms at curing temperature 10 °C. The bending curvature is 21 mm. The dye-doped LC gels open a new window for trim-able electronic papers, decorative displays, electrically switchable curtains, and electrically switchable sun control film for the automobiles, homes or commercial buildings

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. P. Crawford, Flexible Flat Panel Displays, (England: Wiley, 2005).
    [CrossRef] [PubMed]
  2. P. Mach, S. J. Rodriguez, R. Nortrup, P. Wiltzius, J. A. Rogers, "Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors," Appl. Phys. Lett. 78, 3592-3594 (2001).
    [CrossRef] [PubMed]
  3. C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, "Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates," Appl. Phys. Lett. 80, 1088-1090 (2002).
    [CrossRef] [PubMed]
  4. D. Hohnholz, H. Okuzaki, and A. G. MacDiarmid, "Plastic electronic devices through line patterning of conducting polymers," Adv. Funct. Mater. 15, 51-56 (2005).
    [CrossRef] [PubMed]
  5. E. A. Buyuktanir, M. Mitrokhin, B. Holter, A. Glushchenk, and J. L. West, "Flexible bistable smectic-A polymer dispersed liquid crystal display," Jpn. J. Appl. Phys. Part 1  45, 4146-4151 (2006).
    [CrossRef] [PubMed]
  6. P. C. Wang and A. G. MacDiarmid, "Integration of polymer-dispersed liquid crystal composites with conducting polymer thin films toward the fabrication of flexible display devices," Displays 28,101-104 (2007).
    [CrossRef] [PubMed]
  7. S. T. Wu and D. K. Yang, Reflective liquid crystal displays, (New York: Wiley, 2001).
    [PubMed]
  8. D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, " Control of reflectivity and bistability in displays using cholesteric liquid crystals," J. Appl. Phys. 76, 1331-1333 (1994).
    [CrossRef] [PubMed]
  9. A. Khan, I. Shiyanovskaya, T. Schneider, N. Miller, T. Ernst, D. Marhefka, F. Nicholson, S. Green, and G. Magyar, "Reflective cholesteric displays: from rigid to flexible," J. Soc. Inf. Disp. 13, 169-474 (2005) .
    [CrossRef] [PubMed]
  10. K. Chari, C. M. Rankin, D. M. Johnson, T. N. Blanton, and R. G. Capurso, "Single-substrate cholesteric liquid crystal displays by colloidal self-assembly," Appl. Phys. Lett. 88, 043502 (2006).
    [CrossRef] [PubMed]
  11. A.  Khan, I. Shiyanovskaya, T. Schneider, E. Montbach, D. J. Davis, N. Miller, D. Marhefka, T. Ernst, F. Nicholson, and J. W. Doane, "Progress in flexible and drapable reflective cholesteric displays," J. Soc. Inf. Disp. 15, 9-16 (2007).
    [CrossRef] [PubMed]
  12. R. Penterman, S. L. Klink, H. de Koning, G. Nisato, D. J. Broer, "Single-substrate liquid-crystal displays by photo-enforced stratification," Nature  417, 55-58 (2002).
    [CrossRef] [PubMed]
  13. P. Raynes, "Liquid crystal painting," Nature,  417, 28-29 (2002).
    [CrossRef] [PubMed]
  14. J. P. A. Vogels, S. I. Klink, R. Penterman, H. D. Koning, E. E. A. Huitema, and D. J. Broer, "Robust flexible LCDs with paintable technology," J. Soc. Inf. Disp. Tech. Dig. 35, 767-769 (2004).
    [CrossRef] [PubMed]
  15. I. Kim, J. H. Kim, D. Kang, D. M. Agra-Kooijman, and S. Kumar, "Fabrication of electro-optic devices using liquid crystals with a single glass substrate," J. Appl. Phys.,  927699-7701 (2002).
    [CrossRef] [PubMed]
  16. J. H. Kim, V. Vorflusev, and S. Kumar, "Single glass substrate LCDs using a phase separated composite organic film method," Displays  25, 207-213 (2004).
    [CrossRef] [PubMed]
  17. Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhao, J. Fang, and S. T. Wu, "IPS-LCD using a glass substrate and an anisotropic polymer film," J. Disp. Technol. 2, 21-25 (2006).
    [CrossRef] [PubMed]
  18. H. W. Ren, S. T. Wu, Y. H. Lin, "Single glass substrate liquid crystal device using electric field-enforced phase separation and photoinduced polymerization," Appl. Phys. Lett. 90, 191105 (2007).
    [CrossRef] [PubMed]
  19. B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, "An electrophoretic ink for all-printed reflective electronic displays," Nature  394, 253-255 (1998).
    [CrossRef] [PubMed]
  20. G. H. Gelinck, H. E. A. Huitema, E. Van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H Van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E Van Rens, and D. M. De Leeuw, "Flexible active-matrix displays and shift registers based on solution-processed organic transistors," Nature Mater. 3, 106-110 (2004).
    [CrossRef] [PubMed]
  21. J. Daniel, A. C. Arias, W. Wong, R. Lujan, S. Ready, B. Krusor, and R. Street, "Jet-printed active-matrix backplanes and electrophoretic displays," Jpn. J. Appl. Phys. Part 1  46, 363-1369 (2007).
    [CrossRef]
  22. J. M. Crowley, N. K. Sheridon, L. Romano, "Dipole moments of gyricon balls," J. Electrost.  55, 247-259 (2002).
    [CrossRef] [PubMed]
  23. G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, "Vacuum-deposited, nonpolymeric flexible organic light-emitting devices," Opt. Lett.  22, 172-174 (1997).
    [CrossRef] [PubMed]
  24. P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, "Achieving full-color organic light-emitting devices for lightweight, flat-panel displays," IEEE T Electron Dev. 44, 1188-1203 (1997).
    [CrossRef] [PubMed]
  25. A. N. Krasnov, "High-contrast organic light-emitting diodes on flexible substrates," Appl. Phys. Lett. 80, 3853-3855 (2002).
    [CrossRef] [PubMed]
  26. A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, "Flexible OLED displays using plastic substrates," IEEE J. Sel. Top. Quantum Electron. 10, 107-114 (2004).
    [CrossRef] [PubMed]
  27. L. S. Zhou, A. Wanga, S. C. Wu, J. Sun, S. Park, and T. N. Jackson, "All-organic active matrix flexible display," Appl. Phys. Lett. 88, 083502 (2006).
    [CrossRef] [PubMed]
  28. P. S. Drzaic, Liquid Crystal Dispersions, (Singapore: World Scientific, 1995).
  29. Y. H. Lin, H. Ren, and S. T. Wu, "High contrast polymer-dispersed liquid crystal in a 90 Cell," Appl. Phys. Lett. 84, 4083-4085 (2004).
    [CrossRef] [PubMed]
  30. Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, X. Liang, and S. T. Wu, "Reflective direct-view displays using a dye-doped dual-frequency liquid crystal gel," J. Disp. Technol. 1, 230-233 (2005).
    [CrossRef] [PubMed]
  31. Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhou, and S. T. Wu, "High contrast and fast response polarization-independent reflective display using a dye-doped dual-frequency liquid crystal gel," Mol. Cryst. Liq. Cryst. 453, 371-378 (2006).
    [CrossRef] [PubMed]
  32. C. H. Wen and S. T. Wu, "Dielectric heating effects of dual-frequency liquid crystals," Appl. Phys. Lett. 86, 231104 (2005).
    [CrossRef] [PubMed]
  33. Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, "Electric heating effects in nematic liquid crystals," J. Appl. Phys. 100, 024906 (2006).
    [CrossRef] [PubMed]
  34. Y. H. Lin, H. Ren,Y. H. Wu, W. Y. Li, X. Liang, and S. T. Wu, "High Performance Reflective and Transflective Displays Using Guest-Host Liquid Crystal Gels," SID Tech. Digest 37, 780-782 (2006).
    [CrossRef] [PubMed]
  35. K. H. Liu, W. Y. Chou, C. C. Liao, C. T Ho, H. P. Shieh, " Microcell liquid crystal film for high-contrast flexible display applications," Jpn. J. Appl. Phys. 45, 7761-7765 (2006).
    [CrossRef]
  36. K. H. Liu, C. Y. Lee, C. T Ho, H. L. Cheng, S. T Lin, H. C. Tang, C. W. Kuo, C. C. Liao, H. P. Shieh, and W. Y. Chou, "Innovative plasma alignment method in flexible liquid crystal display films," Electrochem. Solid State Lett. 10, J132-J135 (2007).
    [CrossRef]
  37. I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals, (Singapore: World Scientific, 1993).

2007 (5)

P. C. Wang and A. G. MacDiarmid, "Integration of polymer-dispersed liquid crystal composites with conducting polymer thin films toward the fabrication of flexible display devices," Displays 28,101-104 (2007).
[CrossRef] [PubMed]

A.  Khan, I. Shiyanovskaya, T. Schneider, E. Montbach, D. J. Davis, N. Miller, D. Marhefka, T. Ernst, F. Nicholson, and J. W. Doane, "Progress in flexible and drapable reflective cholesteric displays," J. Soc. Inf. Disp. 15, 9-16 (2007).
[CrossRef] [PubMed]

H. W. Ren, S. T. Wu, Y. H. Lin, "Single glass substrate liquid crystal device using electric field-enforced phase separation and photoinduced polymerization," Appl. Phys. Lett. 90, 191105 (2007).
[CrossRef] [PubMed]

J. Daniel, A. C. Arias, W. Wong, R. Lujan, S. Ready, B. Krusor, and R. Street, "Jet-printed active-matrix backplanes and electrophoretic displays," Jpn. J. Appl. Phys. Part 1  46, 363-1369 (2007).
[CrossRef]

K. H. Liu, C. Y. Lee, C. T Ho, H. L. Cheng, S. T Lin, H. C. Tang, C. W. Kuo, C. C. Liao, H. P. Shieh, and W. Y. Chou, "Innovative plasma alignment method in flexible liquid crystal display films," Electrochem. Solid State Lett. 10, J132-J135 (2007).
[CrossRef]

2006 (8)

Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, "Electric heating effects in nematic liquid crystals," J. Appl. Phys. 100, 024906 (2006).
[CrossRef] [PubMed]

Y. H. Lin, H. Ren,Y. H. Wu, W. Y. Li, X. Liang, and S. T. Wu, "High Performance Reflective and Transflective Displays Using Guest-Host Liquid Crystal Gels," SID Tech. Digest 37, 780-782 (2006).
[CrossRef] [PubMed]

K. H. Liu, W. Y. Chou, C. C. Liao, C. T Ho, H. P. Shieh, " Microcell liquid crystal film for high-contrast flexible display applications," Jpn. J. Appl. Phys. 45, 7761-7765 (2006).
[CrossRef]

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhou, and S. T. Wu, "High contrast and fast response polarization-independent reflective display using a dye-doped dual-frequency liquid crystal gel," Mol. Cryst. Liq. Cryst. 453, 371-378 (2006).
[CrossRef] [PubMed]

L. S. Zhou, A. Wanga, S. C. Wu, J. Sun, S. Park, and T. N. Jackson, "All-organic active matrix flexible display," Appl. Phys. Lett. 88, 083502 (2006).
[CrossRef] [PubMed]

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhao, J. Fang, and S. T. Wu, "IPS-LCD using a glass substrate and an anisotropic polymer film," J. Disp. Technol. 2, 21-25 (2006).
[CrossRef] [PubMed]

K. Chari, C. M. Rankin, D. M. Johnson, T. N. Blanton, and R. G. Capurso, "Single-substrate cholesteric liquid crystal displays by colloidal self-assembly," Appl. Phys. Lett. 88, 043502 (2006).
[CrossRef] [PubMed]

E. A. Buyuktanir, M. Mitrokhin, B. Holter, A. Glushchenk, and J. L. West, "Flexible bistable smectic-A polymer dispersed liquid crystal display," Jpn. J. Appl. Phys. Part 1  45, 4146-4151 (2006).
[CrossRef] [PubMed]

2005 (4)

D. Hohnholz, H. Okuzaki, and A. G. MacDiarmid, "Plastic electronic devices through line patterning of conducting polymers," Adv. Funct. Mater. 15, 51-56 (2005).
[CrossRef] [PubMed]

A. Khan, I. Shiyanovskaya, T. Schneider, N. Miller, T. Ernst, D. Marhefka, F. Nicholson, S. Green, and G. Magyar, "Reflective cholesteric displays: from rigid to flexible," J. Soc. Inf. Disp. 13, 169-474 (2005) .
[CrossRef] [PubMed]

C. H. Wen and S. T. Wu, "Dielectric heating effects of dual-frequency liquid crystals," Appl. Phys. Lett. 86, 231104 (2005).
[CrossRef] [PubMed]

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, X. Liang, and S. T. Wu, "Reflective direct-view displays using a dye-doped dual-frequency liquid crystal gel," J. Disp. Technol. 1, 230-233 (2005).
[CrossRef] [PubMed]

2004 (5)

A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, "Flexible OLED displays using plastic substrates," IEEE J. Sel. Top. Quantum Electron. 10, 107-114 (2004).
[CrossRef] [PubMed]

Y. H. Lin, H. Ren, and S. T. Wu, "High contrast polymer-dispersed liquid crystal in a 90 Cell," Appl. Phys. Lett. 84, 4083-4085 (2004).
[CrossRef] [PubMed]

G. H. Gelinck, H. E. A. Huitema, E. Van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H Van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E Van Rens, and D. M. De Leeuw, "Flexible active-matrix displays and shift registers based on solution-processed organic transistors," Nature Mater. 3, 106-110 (2004).
[CrossRef] [PubMed]

J. H. Kim, V. Vorflusev, and S. Kumar, "Single glass substrate LCDs using a phase separated composite organic film method," Displays  25, 207-213 (2004).
[CrossRef] [PubMed]

J. P. A. Vogels, S. I. Klink, R. Penterman, H. D. Koning, E. E. A. Huitema, and D. J. Broer, "Robust flexible LCDs with paintable technology," J. Soc. Inf. Disp. Tech. Dig. 35, 767-769 (2004).
[CrossRef] [PubMed]

2002 (6)

I. Kim, J. H. Kim, D. Kang, D. M. Agra-Kooijman, and S. Kumar, "Fabrication of electro-optic devices using liquid crystals with a single glass substrate," J. Appl. Phys.,  927699-7701 (2002).
[CrossRef] [PubMed]

R. Penterman, S. L. Klink, H. de Koning, G. Nisato, D. J. Broer, "Single-substrate liquid-crystal displays by photo-enforced stratification," Nature  417, 55-58 (2002).
[CrossRef] [PubMed]

P. Raynes, "Liquid crystal painting," Nature,  417, 28-29 (2002).
[CrossRef] [PubMed]

C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, "Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates," Appl. Phys. Lett. 80, 1088-1090 (2002).
[CrossRef] [PubMed]

A. N. Krasnov, "High-contrast organic light-emitting diodes on flexible substrates," Appl. Phys. Lett. 80, 3853-3855 (2002).
[CrossRef] [PubMed]

J. M. Crowley, N. K. Sheridon, L. Romano, "Dipole moments of gyricon balls," J. Electrost.  55, 247-259 (2002).
[CrossRef] [PubMed]

2001 (1)

P. Mach, S. J. Rodriguez, R. Nortrup, P. Wiltzius, J. A. Rogers, "Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors," Appl. Phys. Lett. 78, 3592-3594 (2001).
[CrossRef] [PubMed]

1998 (1)

B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, "An electrophoretic ink for all-printed reflective electronic displays," Nature  394, 253-255 (1998).
[CrossRef] [PubMed]

1997 (2)

G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, "Vacuum-deposited, nonpolymeric flexible organic light-emitting devices," Opt. Lett.  22, 172-174 (1997).
[CrossRef] [PubMed]

P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, "Achieving full-color organic light-emitting devices for lightweight, flat-panel displays," IEEE T Electron Dev. 44, 1188-1203 (1997).
[CrossRef] [PubMed]

1994 (1)

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, " Control of reflectivity and bistability in displays using cholesteric liquid crystals," J. Appl. Phys. 76, 1331-1333 (1994).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

D. Hohnholz, H. Okuzaki, and A. G. MacDiarmid, "Plastic electronic devices through line patterning of conducting polymers," Adv. Funct. Mater. 15, 51-56 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (8)

P. Mach, S. J. Rodriguez, R. Nortrup, P. Wiltzius, J. A. Rogers, "Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors," Appl. Phys. Lett. 78, 3592-3594 (2001).
[CrossRef] [PubMed]

C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, "Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates," Appl. Phys. Lett. 80, 1088-1090 (2002).
[CrossRef] [PubMed]

K. Chari, C. M. Rankin, D. M. Johnson, T. N. Blanton, and R. G. Capurso, "Single-substrate cholesteric liquid crystal displays by colloidal self-assembly," Appl. Phys. Lett. 88, 043502 (2006).
[CrossRef] [PubMed]

H. W. Ren, S. T. Wu, Y. H. Lin, "Single glass substrate liquid crystal device using electric field-enforced phase separation and photoinduced polymerization," Appl. Phys. Lett. 90, 191105 (2007).
[CrossRef] [PubMed]

A. N. Krasnov, "High-contrast organic light-emitting diodes on flexible substrates," Appl. Phys. Lett. 80, 3853-3855 (2002).
[CrossRef] [PubMed]

L. S. Zhou, A. Wanga, S. C. Wu, J. Sun, S. Park, and T. N. Jackson, "All-organic active matrix flexible display," Appl. Phys. Lett. 88, 083502 (2006).
[CrossRef] [PubMed]

Y. H. Lin, H. Ren, and S. T. Wu, "High contrast polymer-dispersed liquid crystal in a 90 Cell," Appl. Phys. Lett. 84, 4083-4085 (2004).
[CrossRef] [PubMed]

C. H. Wen and S. T. Wu, "Dielectric heating effects of dual-frequency liquid crystals," Appl. Phys. Lett. 86, 231104 (2005).
[CrossRef] [PubMed]

Display Technology (1)

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, X. Liang, and S. T. Wu, "Reflective direct-view displays using a dye-doped dual-frequency liquid crystal gel," J. Disp. Technol. 1, 230-233 (2005).
[CrossRef] [PubMed]

Displays (2)

J. H. Kim, V. Vorflusev, and S. Kumar, "Single glass substrate LCDs using a phase separated composite organic film method," Displays  25, 207-213 (2004).
[CrossRef] [PubMed]

P. C. Wang and A. G. MacDiarmid, "Integration of polymer-dispersed liquid crystal composites with conducting polymer thin films toward the fabrication of flexible display devices," Displays 28,101-104 (2007).
[CrossRef] [PubMed]

Electrochem. Solid State Lett. (1)

K. H. Liu, C. Y. Lee, C. T Ho, H. L. Cheng, S. T Lin, H. C. Tang, C. W. Kuo, C. C. Liao, H. P. Shieh, and W. Y. Chou, "Innovative plasma alignment method in flexible liquid crystal display films," Electrochem. Solid State Lett. 10, J132-J135 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, "Flexible OLED displays using plastic substrates," IEEE J. Sel. Top. Quantum Electron. 10, 107-114 (2004).
[CrossRef] [PubMed]

IEEE T Electron Dev. (1)

P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, "Achieving full-color organic light-emitting devices for lightweight, flat-panel displays," IEEE T Electron Dev. 44, 1188-1203 (1997).
[CrossRef] [PubMed]

J. Appl. Phys. (3)

Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, "Electric heating effects in nematic liquid crystals," J. Appl. Phys. 100, 024906 (2006).
[CrossRef] [PubMed]

I. Kim, J. H. Kim, D. Kang, D. M. Agra-Kooijman, and S. Kumar, "Fabrication of electro-optic devices using liquid crystals with a single glass substrate," J. Appl. Phys.,  927699-7701 (2002).
[CrossRef] [PubMed]

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, " Control of reflectivity and bistability in displays using cholesteric liquid crystals," J. Appl. Phys. 76, 1331-1333 (1994).
[CrossRef] [PubMed]

J. Display Technology (1)

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhao, J. Fang, and S. T. Wu, "IPS-LCD using a glass substrate and an anisotropic polymer film," J. Disp. Technol. 2, 21-25 (2006).
[CrossRef] [PubMed]

J. Electrost. (1)

J. M. Crowley, N. K. Sheridon, L. Romano, "Dipole moments of gyricon balls," J. Electrost.  55, 247-259 (2002).
[CrossRef] [PubMed]

J. Soc. Inf. Disp. (2)

A.  Khan, I. Shiyanovskaya, T. Schneider, E. Montbach, D. J. Davis, N. Miller, D. Marhefka, T. Ernst, F. Nicholson, and J. W. Doane, "Progress in flexible and drapable reflective cholesteric displays," J. Soc. Inf. Disp. 15, 9-16 (2007).
[CrossRef] [PubMed]

A. Khan, I. Shiyanovskaya, T. Schneider, N. Miller, T. Ernst, D. Marhefka, F. Nicholson, S. Green, and G. Magyar, "Reflective cholesteric displays: from rigid to flexible," J. Soc. Inf. Disp. 13, 169-474 (2005) .
[CrossRef] [PubMed]

J. Soc. Inf. Disp. Tech. Dig. (1)

J. P. A. Vogels, S. I. Klink, R. Penterman, H. D. Koning, E. E. A. Huitema, and D. J. Broer, "Robust flexible LCDs with paintable technology," J. Soc. Inf. Disp. Tech. Dig. 35, 767-769 (2004).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys (2)

E. A. Buyuktanir, M. Mitrokhin, B. Holter, A. Glushchenk, and J. L. West, "Flexible bistable smectic-A polymer dispersed liquid crystal display," Jpn. J. Appl. Phys. Part 1  45, 4146-4151 (2006).
[CrossRef] [PubMed]

J. Daniel, A. C. Arias, W. Wong, R. Lujan, S. Ready, B. Krusor, and R. Street, "Jet-printed active-matrix backplanes and electrophoretic displays," Jpn. J. Appl. Phys. Part 1  46, 363-1369 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. H. Liu, W. Y. Chou, C. C. Liao, C. T Ho, H. P. Shieh, " Microcell liquid crystal film for high-contrast flexible display applications," Jpn. J. Appl. Phys. 45, 7761-7765 (2006).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhou, and S. T. Wu, "High contrast and fast response polarization-independent reflective display using a dye-doped dual-frequency liquid crystal gel," Mol. Cryst. Liq. Cryst. 453, 371-378 (2006).
[CrossRef] [PubMed]

Nature (3)

B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, "An electrophoretic ink for all-printed reflective electronic displays," Nature  394, 253-255 (1998).
[CrossRef] [PubMed]

R. Penterman, S. L. Klink, H. de Koning, G. Nisato, D. J. Broer, "Single-substrate liquid-crystal displays by photo-enforced stratification," Nature  417, 55-58 (2002).
[CrossRef] [PubMed]

P. Raynes, "Liquid crystal painting," Nature,  417, 28-29 (2002).
[CrossRef] [PubMed]

Nature Mater. (1)

G. H. Gelinck, H. E. A. Huitema, E. Van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H Van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E Van Rens, and D. M. De Leeuw, "Flexible active-matrix displays and shift registers based on solution-processed organic transistors," Nature Mater. 3, 106-110 (2004).
[CrossRef] [PubMed]

Opt. Lett. (1)

SID Tech. Digest (1)

Y. H. Lin, H. Ren,Y. H. Wu, W. Y. Li, X. Liang, and S. T. Wu, "High Performance Reflective and Transflective Displays Using Guest-Host Liquid Crystal Gels," SID Tech. Digest 37, 780-782 (2006).
[CrossRef] [PubMed]

Other (4)

P. S. Drzaic, Liquid Crystal Dispersions, (Singapore: World Scientific, 1995).

G. P. Crawford, Flexible Flat Panel Displays, (England: Wiley, 2005).
[CrossRef] [PubMed]

S. T. Wu and D. K. Yang, Reflective liquid crystal displays, (New York: Wiley, 2001).
[PubMed]

I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals, (Singapore: World Scientific, 1993).

Supplementary Material (6)

» Media 1: MPG (496 KB)     
» Media 2: MPG (382 KB)     
» Media 3: MPG (794 KB)     
» Media 4: MPG (216 KB)     
» Media 5: MPG (1388 KB)     
» Media 6: MPG (568 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic operating principle of dye-doped liquid crystal display at (a) voltage-off state and (b) voltage-on state. The alignment layer has no rubbing treatment.

Fig. 2.
Fig. 2.

The microscopic images of dye-doped LC gels at 0 Vrms and 30 Vrms.

Fig. 3.
Fig. 3.

Reflectance as a function of angle of the polarizer at different applied voltages. The curing temperature was 20 °C.

Fig. 4.
Fig. 4.

(a) Voltage-dependent reflectance at various curing temperature. (b) Curing temperature-dependent response time

Fig. 5
Fig. 5

Transmission spectra of dye-doped LC gels before (blue line) and after UV curing (pink line) at voltage-off state. The curing temperature was 20°C. Green line indicates the transmission spectra of white light source.

Fig. 6.
Fig. 6.

(a)A single pixel polarizer-free reflective LCD using the dye-doped LC gels in glass substrates at curing temperature 10 °C. (497 KB) (b) A single pixel polarizer-free reflective and flexible LCD using dye-doped LC gels at curing temperature 20 °C. (728 KB) White papers were used as diffusive reflectors. [Media 1][Media 2]

Fig. 7.
Fig. 7.

The transmission as a function of bending radius curvature of a single pixel dye-doped LC gels at at 0 and 30 Vrms. The curing temperatures was 20 °C.

Fig. 8.
Fig. 8.

A single pixel of a polarizer-free reflective and flexible LCD using dye-doped LC gels under bending at (a) 0 Vrms in transmissive mode (794KB) and (b) 30 Vrms in reflective mode (216KB), and (c) by a scissor cutting(1.35MB) (d) A single pixel of a polarizer-free reflective and flexible LCD using dye-doped dual frequency LC gels under bending. (569 KB) The curing temperatures were 20 °C in (a),(b) and (c). The curing temperature was 10 °C in (d). White papers were used as diffusive reflectors in (b),(c) and (d) [Media 3][Media 4][Media 5][Media 6]

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R ( θ ) = a · e σ ( θ ) · N · 2 d · e α ( θ ) · c · 2 d
α ( θ ) = α e ( θ ) + α 2
α e ( θ ) = α · α α 2 · cos 2 ( θ ) + α 2 · sin 2 ( θ )
σ ( θ ) [ r λ ( n ( θ ) n p ) ] 2
n ( θ ) = n e · n o n e 2 · cos 2 ( θ ) + n o 2 · sin 2 ( θ )

Metrics