Abstract

Endoscopic imaging below tissue surfaces and through turbid media may provide improved diagnostic capabilities and visibility in surgical settings. Spectrally encoded endoscopy (SEE) is a recently developed method that utilizes a single optical fiber, miniature optics and a diffractive grating for high-speed imaging through small diameter, flexible endoscopic probes. SEE has also been shown to provide three-dimensional topological imaging capabilities. In this paper, we have configured SEE to additionally image beneath tissue surfaces, by increasing the system’s sensitivity and acquiring the complex spectral density for each spectrally resolved point on the sample. In order to demonstrate the capability of SEE to obtain subsurface information, we have utilized the system to image a resolution target through intralipid solution, and conduct volumetric imaging of a mouse embryo and excised human middle-ear ossicles. Our results demonstrate that real-time subsurface imaging is possible with this miniature endoscopy technique.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. Montgomery, M. P. Bronner, J. R. Goldblum, J. K. Greenson, M. M. Haber, J. Hart, L. W. Lamps, G. Y. Lauwers, A. J. Lazenby, D. N. Lewin, M. E. Robert, A. Y. Toledano, Y. Shyr, and K. Washington, "Reproducibility of the diagnosis of dysplasia in Barrett esophagus: A reaffirmation," Hum. Pathol. 32, 368-378 (2001).
    [CrossRef] [PubMed]
  2. C. Klug, B. Fabinyi, and M. Tschabitscher, "Endoscopy of the middle ear through the Eustachian tube: Anatomic possibilities and limitations," Am. J. Otol. 20, 299-303 (1999).
    [PubMed]
  3. M. A. D'Hallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin, "Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder," J. Urol. 174, 736-740 (2005).
    [CrossRef] [PubMed]
  4. A. F. Gmitro, and D. Aziz, "Confocal Microscopy through a fiberoptic imaging bundle," Opt. Lett. 18, 565-567 (1993).
    [CrossRef] [PubMed]
  5. C. Liang, K. B. Sung, R. R. Richards-Kortum, and M. R. Descour, "Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope," Appl. Opt. 41, 4603-4610 (2002).
    [CrossRef] [PubMed]
  6. A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, "A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract," Gastrointest. Endosc. 62, 686-695 (2005).
    [CrossRef] [PubMed]
  7. G. J. Tearney, M. Shishkov, and B. E. Bouma, "Spectrally encoded miniature endoscopy," Opt. Lett. 27, 412-414 (2002).
    [CrossRef]
  8. T. D. Wang, M. J. Mandella, C. H. Contag, and G. S. Kino, "Dual-axis confocal microscope for high-resolution in vivo imaging," Opt. Lett. 28, 414-416 (2003).
    [CrossRef] [PubMed]
  9. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  10. Q1. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, "Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography (vol 21, pg 543, 1996)," Opt. Lett. 21, 912-912 (1996).
    [CrossRef] [PubMed]
  11. A. D. Aguirre, P. R. Herz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, "Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face imaging," Opt. Express 15, 2445-2453 (2007).
    [CrossRef] [PubMed]
  12. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2006).
    [CrossRef] [PubMed]
  13. Q2. D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, "Three-dimensional miniature endoscopy," Nature 443, 765-765 (2006).
    [CrossRef] [PubMed]
  14. D. Yelin, S. H. Yun, B. E. Bouma, and G. J. Tearney, "Three-dimensional imaging using spectral encoding heterodyne interferometry," Opt. Lett. 30, 1794-1796 (2005).
    [CrossRef] [PubMed]
  15. D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, and G. J. Tearney, "Spectral-domain spectrally-encoded endoscopy," Opt. Express 15, 2432-2444 (2007).
    [CrossRef] [PubMed]
  16. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28, 2201-2203 (2003).
    [CrossRef] [PubMed]
  17. J. T. Oh, and B. M. Kim, "Artifact removal in complex frequency domain optical coherence tomography with an iterative least-squares phase-shifting algorithm," Appl. Opt. 45, 4157-4164 (2006).
    [CrossRef] [PubMed]
  18. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002).
    [CrossRef]

2007 (2)

2006 (3)

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2006).
[CrossRef] [PubMed]

Q2. D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, "Three-dimensional miniature endoscopy," Nature 443, 765-765 (2006).
[CrossRef] [PubMed]

J. T. Oh, and B. M. Kim, "Artifact removal in complex frequency domain optical coherence tomography with an iterative least-squares phase-shifting algorithm," Appl. Opt. 45, 4157-4164 (2006).
[CrossRef] [PubMed]

2005 (3)

D. Yelin, S. H. Yun, B. E. Bouma, and G. J. Tearney, "Three-dimensional imaging using spectral encoding heterodyne interferometry," Opt. Lett. 30, 1794-1796 (2005).
[CrossRef] [PubMed]

M. A. D'Hallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin, "Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder," J. Urol. 174, 736-740 (2005).
[CrossRef] [PubMed]

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, "A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract," Gastrointest. Endosc. 62, 686-695 (2005).
[CrossRef] [PubMed]

2003 (2)

2002 (3)

2001 (1)

E. Montgomery, M. P. Bronner, J. R. Goldblum, J. K. Greenson, M. M. Haber, J. Hart, L. W. Lamps, G. Y. Lauwers, A. J. Lazenby, D. N. Lewin, M. E. Robert, A. Y. Toledano, Y. Shyr, and K. Washington, "Reproducibility of the diagnosis of dysplasia in Barrett esophagus: A reaffirmation," Hum. Pathol. 32, 368-378 (2001).
[CrossRef] [PubMed]

1999 (1)

C. Klug, B. Fabinyi, and M. Tschabitscher, "Endoscopy of the middle ear through the Eustachian tube: Anatomic possibilities and limitations," Am. J. Otol. 20, 299-303 (1999).
[PubMed]

1996 (1)

1993 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Am. J. Otol. (1)

C. Klug, B. Fabinyi, and M. Tschabitscher, "Endoscopy of the middle ear through the Eustachian tube: Anatomic possibilities and limitations," Am. J. Otol. 20, 299-303 (1999).
[PubMed]

Appl. Opt. (2)

Gastrointest. Endosc. (1)

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, "A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract," Gastrointest. Endosc. 62, 686-695 (2005).
[CrossRef] [PubMed]

Human Pathology (1)

E. Montgomery, M. P. Bronner, J. R. Goldblum, J. K. Greenson, M. M. Haber, J. Hart, L. W. Lamps, G. Y. Lauwers, A. J. Lazenby, D. N. Lewin, M. E. Robert, A. Y. Toledano, Y. Shyr, and K. Washington, "Reproducibility of the diagnosis of dysplasia in Barrett esophagus: A reaffirmation," Hum. Pathol. 32, 368-378 (2001).
[CrossRef] [PubMed]

J. Urol. (1)

M. A. D'Hallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin, "Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder," J. Urol. 174, 736-740 (2005).
[CrossRef] [PubMed]

Nat. Med. (1)

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2006).
[CrossRef] [PubMed]

Nature (1)

Q2. D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, "Three-dimensional miniature endoscopy," Nature 443, 765-765 (2006).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (7)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: AVI (5915 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the spectrally-encoded endoscopy system. ND – neutral density; CCD – charge coupled device; SEE – spectrally encoded endoscopy.

Fig. 2.
Fig. 2.

Imaging of a scattering resolution target through a 1 mm thick layer of 0% (a), 1% (b), and 2% (c) intralipid with the reference arm blocked, is compared with imaging through the same concentrations (d–f) using spectral-domain interferometry. The width of the smallest bars in the resolution target (group 2, element 5) corresponds to approximately 79 µm. Images were plotted using a logarithmic look up table.

Fig. 3.
Fig. 3.

(a) A photograph of a formalin fixed stage E14 mouse embryo. (b) A magnified view of the area within the dotted rectangle in (a). (c) Depth-integrated intensity image of the SEE volumetric data set shows the embryo’s hind paw, tail and umbilical cord. (d–k) Transverse sections of the volume data set at different depths. The relative axial locations are shown in the upper right corner of each frame. Arrow heads in (f–g) mark the phalanges. Arrow in (i) denotes the tail ligament. P - hind paw. U - umbilical cord. T - tail. Scale bars represent 500 µm.

Fig. 4.
Fig. 4.

(a) A photograph of an excised human stapes showing the anterior (A) and posterior (P) crura. (b) A movie showing volumetric rendering of the SEE data set. (c–d) x–z cross sections of the data set. A – anterior crus; P – posterior crus. Scale bars represent 500 µm.[Media 1]

Fig. 5.
Fig. 5.

(a) Depth-integrated rendered SEE image of excised human ossicles, showing the stapes, incudostapedial joint and incus. (b) A photograph of the bones in a similar orientation to (a). (c) A photograph showing a side view of the incudostapedial joint. (d) Projection of the data set on the y–z plane. The image is wrapped around the reference plane (marked by an arrow). (e) The unwrapped y–z image, shows the full extent of the joint. (f) An x–z cross section of the data set at the location marked by dotted line in (e). Arrows in (d–f) mark the location of the reference plane (e). Arrow heads in (e) and (f) mark ghosting artifacts due to errors in depth ambiguity removal. Scale bars represent 500 µm.

Tables (1)

Tables Icon

Table 1. Differences between spectral domain SEE (SD-SEE) and spectral-domain OCT (SDOCT).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( x s , y , z ) = 1 W x s W 2 x s + W 2 w ( x s ) · I ( x s , y ) exp ( 2 π i x s · z · C L W ) d x s 2 ,
I ( x s , y ) = I 1 ( x s , y ) + exp ( i Δ ϕ ( x s ) ) I 2 ( x s , y ) ,
Δ ϕ ( x s ) = P · λ ( x s ) λ 0 · π 2 .

Metrics