Abstract

High Power Microwave (HPM) weapons and other sources of intense microwave power pose a growing threat to modern RF receivers. To address this problem, all-dielectric photonic-assisted receivers have been proposed and demonstrated. Here, we describe a new configuration of this type with 15 dB better sensitivity over prior designs. The complete lack of metal and electronics in the front-end offers immunity against damage from intense electromagnetic radiation. In this experiment, detection of C band electromagnetic signal at 6.54 GHz with a sensitivity of -112 dBm/Hz is demonstrated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, "All-dielectric wireless receiver," in 2007 IEEE MTT-S Int. Microwave Symp. Dig. 2007, pp. 221-224.
  2. R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, "All-dielectric photonic-assisted radio front-end technology," Nat. Photonics 1, 535-538 (2007).
    [CrossRef]
  3. D. A. Cohen, M. Houssein-Zadeh, and A. F. J. Levi, "Microphotonic modulator for a microwave receiver," Electron. Lett. 37, 300-301 (2001).
    [CrossRef]
  4. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, "Sub-microWatt photonic microwave receiver," IEEE Photon. Technol. Lett. 14, 1602-1604 (2002).
    [CrossRef]
  5. J. A. Valdmanis and G. Mourou, "Subpicosecond electrooptic sampling: principles and applications," IEEE J. Quantum Electron. 22, 69-78 (1986).
    [CrossRef]
  6. R. Meredith, Engineers’ Handbook of Industrial Microwave Heating (The Institution of Electrical Engineers, London, United Kingdom, 1998).
    [CrossRef]
  7. H. K. Florig, "The future battlefield: A blast of gigawatts?," IEEE Spectrum. 25, 50-54 (1988).
    [CrossRef]
  8. S. Panteny, R. Stevens, and C. R. Bowen, "Characterisation and Modelling of Barium Titanate-Silver Composites," Integr. Ferroelectrics 63, 131-135 (2004).
    [CrossRef]
  9. T. Tamir, Guided-Wave Optoelectronics (Berlin Heidelberg: Spring-Verlag, 1988).
    [CrossRef]

2007

R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, "All-dielectric photonic-assisted radio front-end technology," Nat. Photonics 1, 535-538 (2007).
[CrossRef]

2004

S. Panteny, R. Stevens, and C. R. Bowen, "Characterisation and Modelling of Barium Titanate-Silver Composites," Integr. Ferroelectrics 63, 131-135 (2004).
[CrossRef]

2002

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, "Sub-microWatt photonic microwave receiver," IEEE Photon. Technol. Lett. 14, 1602-1604 (2002).
[CrossRef]

2001

D. A. Cohen, M. Houssein-Zadeh, and A. F. J. Levi, "Microphotonic modulator for a microwave receiver," Electron. Lett. 37, 300-301 (2001).
[CrossRef]

1988

H. K. Florig, "The future battlefield: A blast of gigawatts?," IEEE Spectrum. 25, 50-54 (1988).
[CrossRef]

1986

J. A. Valdmanis and G. Mourou, "Subpicosecond electrooptic sampling: principles and applications," IEEE J. Quantum Electron. 22, 69-78 (1986).
[CrossRef]

Electron. Lett.

D. A. Cohen, M. Houssein-Zadeh, and A. F. J. Levi, "Microphotonic modulator for a microwave receiver," Electron. Lett. 37, 300-301 (2001).
[CrossRef]

IEEE J. Quantum Electron.

J. A. Valdmanis and G. Mourou, "Subpicosecond electrooptic sampling: principles and applications," IEEE J. Quantum Electron. 22, 69-78 (1986).
[CrossRef]

IEEE Photon. Technol. Lett.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, "Sub-microWatt photonic microwave receiver," IEEE Photon. Technol. Lett. 14, 1602-1604 (2002).
[CrossRef]

IEEE Spectrum.

H. K. Florig, "The future battlefield: A blast of gigawatts?," IEEE Spectrum. 25, 50-54 (1988).
[CrossRef]

Integr. Ferroelectrics

S. Panteny, R. Stevens, and C. R. Bowen, "Characterisation and Modelling of Barium Titanate-Silver Composites," Integr. Ferroelectrics 63, 131-135 (2004).
[CrossRef]

Nat. Photonics

R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, "All-dielectric photonic-assisted radio front-end technology," Nat. Photonics 1, 535-538 (2007).
[CrossRef]

Other

R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, "All-dielectric wireless receiver," in 2007 IEEE MTT-S Int. Microwave Symp. Dig. 2007, pp. 221-224.

T. Tamir, Guided-Wave Optoelectronics (Berlin Heidelberg: Spring-Verlag, 1988).
[CrossRef]

R. Meredith, Engineers’ Handbook of Industrial Microwave Heating (The Institution of Electrical Engineers, London, United Kingdom, 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Concept of the photonic-assisted all-dielectric RF front-end technology. An electro-optic (EO) powered dielectric antenna captures the free-space RF signal. The embedded optical link provides complete electrical isolation between the air interface and the electronic circuitry, which is located only after the photodetector (PD).

Fig. 2.
Fig. 2.

Details of the receiver front-end design. a, Three-dimensional drawing of the DRA. b, Numerical simulation of the distribution of the electric field of the TM011+δ mode inside the DRA in meridian plane.

Fig. 3.
Fig. 3.

Demodulated microwave spectrum after photodetection with (solid line) and without (dashed line) the dielectric resonator antenna. Horn antenna feed power is 10 dBm and resolution BW = 10 KHz.

Tables (1)

Tables Icon

Table 1. Material parameters for LiNbO3 and DRA

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P = 2 πf ε o ε E 2
d T dt = P ρ C p
P = 2 π f ε o ε   · E DRA 2 = 2 π f ε o ε   · E o 2   · β 2
P = 4 π f ε · I · β 2 c
d T dt = 4 π f ε · I · β 2 ρ · c · c p
Δ T = 4 π f ε · β 2 · ( I · Δ t ) ρ · c · c p

Metrics