Abstract

Intrinsic loss of absorption in the Ag slab near-field superlens turned out to add a blurring effect to the ideal image reconstruction for the impedance match case. By optimizing the real part of the permittivity (ε′) of Ag, our FDTD calculation predicts ~69% enhancement of visibility and ~138% increased depth of field for the intensity contrast of 0.5 with similar focal spot size. For a near-field superlens with the higher absorption loss, the optimized image quality is obtained with a larger impedance mismatch, which can be realized by changing the wavelength of incident light for imaging.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. V. G. Veselago, "Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities," Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
    [CrossRef] [PubMed]
  3. V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356 (2005).
    [CrossRef]
  4. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494 - 1496 (2004).
    [CrossRef] [PubMed]
  5. M. Wiltshire, J. Hajnal, J. B. Pendry, D. Edwards, and C. Stevens, "Metamaterial endoscope for magnetic field transfer: near field imaging with magnetic wires," Opt. Express 11, 709-715 (2003).
    [CrossRef] [PubMed]
  6. S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett. 90, 107402 (2003).
    [CrossRef] [PubMed]
  7. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  8. R. J. Blaikie and S. J. McNab, "Simulation study of ‘perfect lenses’ for near-field optical nanolithography," Microelectron. Eng. 61-62, 97-103 (2002).
  9. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  10. R. J. Blaikie, D. O. S. Melville, and M. M. Alkaisi, "Super-resolution near field lithography using planar silver lenses," Microelectron. Eng. 83, 723-729 (2006).
    [CrossRef]
  11. W. Cai, D. A. Genov, and V. M. Shalaev, "Superlens based on metal-dielectric composites," Phys. Rev. B 72, 193101 (2005).
    [CrossRef]
  12. P. B. Johnson and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379(1972).
  13. K. S. Kunz and R. J. Luebbers, Finite difference time domain method for electromagnetic, (CRC Press, Boca Raton, 1993).
  14. M. M. Alkaisi, R. J. Blaikie, and S. J. McNab, "Nanolithography in the evanescent near field," Adv. Mater. 13, 877-887 (2001).
    [CrossRef]
  15. A. L. Pokrovsky and A. L. Efros, "Lens based on the use of left handed materials," Appl. Opt. 42, 5701-5705 (2003).
    [CrossRef] [PubMed]
  16. V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75 (2005).
    [CrossRef] [PubMed]
  17. G. D’Aguanno, N. Mattiucci, and M. Bloemer, "Influence of the losses on the super-resolution performances of an impedance matched negative index material," J. Opt. Soc. Am B, in press.
  18. K. Mizuuchi, K. Yamamoto, and M. Kato, "Generation of ultraviolet light by frequency doubling of a red laser diode in a first-order periodically poled bulk LiTaO3," Appl. Phys. Lett. 70, 1201-1203 (1997).
    [CrossRef]

2006 (1)

R. J. Blaikie, D. O. S. Melville, and M. M. Alkaisi, "Super-resolution near field lithography using planar silver lenses," Microelectron. Eng. 83, 723-729 (2006).
[CrossRef]

2005 (4)

W. Cai, D. A. Genov, and V. M. Shalaev, "Superlens based on metal-dielectric composites," Phys. Rev. B 72, 193101 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75 (2005).
[CrossRef] [PubMed]

V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356 (2005).
[CrossRef]

2004 (1)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494 - 1496 (2004).
[CrossRef] [PubMed]

2003 (3)

2002 (1)

R. J. Blaikie and S. J. McNab, "Simulation study of ‘perfect lenses’ for near-field optical nanolithography," Microelectron. Eng. 61-62, 97-103 (2002).

2001 (1)

M. M. Alkaisi, R. J. Blaikie, and S. J. McNab, "Nanolithography in the evanescent near field," Adv. Mater. 13, 877-887 (2001).
[CrossRef]

2000 (2)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

1997 (1)

K. Mizuuchi, K. Yamamoto, and M. Kato, "Generation of ultraviolet light by frequency doubling of a red laser diode in a first-order periodically poled bulk LiTaO3," Appl. Phys. Lett. 70, 1201-1203 (1997).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379(1972).

1968 (1)

V. G. Veselago, "Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Adv. Mater. (1)

M. M. Alkaisi, R. J. Blaikie, and S. J. McNab, "Nanolithography in the evanescent near field," Adv. Mater. 13, 877-887 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Mizuuchi, K. Yamamoto, and M. Kato, "Generation of ultraviolet light by frequency doubling of a red laser diode in a first-order periodically poled bulk LiTaO3," Appl. Phys. Lett. 70, 1201-1203 (1997).
[CrossRef]

J. Opt. Soc. Am B (1)

G. D’Aguanno, N. Mattiucci, and M. Bloemer, "Influence of the losses on the super-resolution performances of an impedance matched negative index material," J. Opt. Soc. Am B, in press.

Microelectron. Eng. (2)

R. J. Blaikie and S. J. McNab, "Simulation study of ‘perfect lenses’ for near-field optical nanolithography," Microelectron. Eng. 61-62, 97-103 (2002).

R. J. Blaikie, D. O. S. Melville, and M. M. Alkaisi, "Super-resolution near field lithography using planar silver lenses," Microelectron. Eng. 83, 723-729 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (2)

W. Cai, D. A. Genov, and V. M. Shalaev, "Superlens based on metal-dielectric composites," Phys. Rev. B 72, 193101 (2005).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379(1972).

Phys. Rev. Lett. (3)

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett. 90, 107402 (2003).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Science (2)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494 - 1496 (2004).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, "Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Other (1)

K. S. Kunz and R. J. Luebbers, Finite difference time domain method for electromagnetic, (CRC Press, Boca Raton, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) The typical geometry of Ag NFSL, which is suggested by Pendry. t 1=40 nm, t 2=40 nm, and f 1=20 nm. A tungsten mask has the grating period of 140 nm (w 2) and the aperture width of 70 nm(w 1). (b) Light intensity distribution calculated from the FDTD method in the impedance match case at 341 nm.

Fig. 2.
Fig. 2.

In the absorptive material of ε″=0.3, we calculated (a) the visibilities and (b) the mean intensities of near-field imaging, depending on the distance from the mask exit in the case of various values of ε′. These results indicate that the impedance mismatch cases (ε′=-0.8) give higher visibility while the intensity is slightly lower.

Fig. 3.
Fig. 3.

Near field light intensity profiles calculated from FDTD method in the impedance mismatch cases of (a) ε′=-0.8 and (b) ε′=-0.5.

Fig. 4.
Fig. 4.

Relative phase changes of the electric field in x-direction (E x ) are calculated as a function of the distance behind (a) the center of the mask aperture and (b) the center of the mask line.

Fig. 5.
Fig. 5.

In the absorptive materials (ε″≠=0), the best visibilities of a NFSL image are achieved when ε′ is not -1 but in the range of -0.7~-0.9 depending on the value of ε″. DOF for a different value of the intensity contrast (k) are calculated when (a) ε″=0.3, (b) ε″=0.02, and (c) ε″=0.6. This artificial impedance mismatch for our optimization is possible if we change the incident light from 341 nm to 335 nm for real silver as shown in (a).

Tables (3)

Tables Icon

Table 1. The wavelength, focal spot sizes, and confocal parameters versus various ε′ of Ag NFSL including impedance mismatch cases.

Tables Icon

Table 2. Visibility and relative intensity at focal positions versus various ε′.

Tables Icon

Table 3. The ε′ for optimized DOF and corresponding wavelength versus various ε″. For real silver, ε″=0.3

Metrics