Abstract

We report laser-induced cooling with thulium-doped BaY2F8 single crystals grown using the Czochralski technique. The spectroscopic characterization of the crystals has been used to evaluate the laser cooling performance of the samples. Cooling by 3 degrees below ambient temperature is obtained in a single-pass geometry with 4.4 Watts of pump laser power at λ=1855 nm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. I. Epstein and M. Sheik-Bahae, eds., Laser Cooling of Solids, Proc. SPIE (Bellingham, Washington, 2007) Vol. 6461.
  2. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, "Observation of laser-induced fluorescent cooling of a solid," Nature 377, 500-502 (1995).
    [CrossRef]
  3. J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, "Cooling to 208 K by optical refrigeration," Appl. Phys. Lett. 86, 154107 (2005).
    [CrossRef]
  4. M. Sheik-Bahae and R. Epstein, "Can laser light cool semiconductors?," Phys. Rev. Lett. 92, 247403 (2004).
    [CrossRef] [PubMed]
  5. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, "Observation of anti-Stokes fluorescence cooling in thulium-doped glass," Phys. Rev. Lett. 85, 3600-3603 (2000).
    [CrossRef] [PubMed]
  6. J. Fernandez, A. J. Garcia-Adeva, and R. Balda, "Anti-Stokes laser cooling in bulk erbium-doped materials," Phys. Rev. Lett. 97, 033001 (2006).
    [CrossRef] [PubMed]
  7. S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, M. Tonelli, and A. Di Lieto, "Spectroscopic and laser cooling results on Yb3+-doped BaY2F8single crystal," J. Appl. Phys. 100, 013109 (2006).
    [CrossRef]
  8. J. M. Parker, "Fluoride glasses," Annu. Rev. Mater. Sci. 19, 21-41 (1989).
    [CrossRef]
  9. C. W. Hoyt, M. Sheik-Bahae, and M. Ebrahimzadeh, "High-power picosecond optical parametric oscillator based on periodically poled lithium niobate," Opt. Lett. 27, 1543-1545 (2002).
    [CrossRef]
  10. C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, "Laser cooling in thulium-doped glass," J. Opt. Soc. Am. B 20, 1066-1074 (2003).
    [CrossRef]
  11. F. Cornacchia, D. Parisi, C. Bernardini, A. Toncelli, and M. Tonelli, "Efficient, diode-pumped Tm3+:BaY2F8vibronic laser," Opt. Express 12, 1982-1989 (2004).
    [CrossRef] [PubMed]
  12. R. I. Epstein, J. J. Brown, B. C. Edwards and A. Gibbs, "Measurements of optical refrigeration in ytterbiumdoped crystals," J. Appl. Phys. 90, 4815-4819 (2001).
    [CrossRef]
  13. K. Puech and L. Lefort and D. C. Hanna, "Broad tuning around degeneracy in a singly resonant synchronously pumped parametric oscillator by means of a diffraction grating," J. Opt. Soc. Am. B 16, 1533-1538 (1999).
    [CrossRef]

2006 (2)

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, "Anti-Stokes laser cooling in bulk erbium-doped materials," Phys. Rev. Lett. 97, 033001 (2006).
[CrossRef] [PubMed]

S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, M. Tonelli, and A. Di Lieto, "Spectroscopic and laser cooling results on Yb3+-doped BaY2F8single crystal," J. Appl. Phys. 100, 013109 (2006).
[CrossRef]

2005 (1)

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, "Cooling to 208 K by optical refrigeration," Appl. Phys. Lett. 86, 154107 (2005).
[CrossRef]

2004 (2)

2003 (1)

2002 (1)

2001 (1)

R. I. Epstein, J. J. Brown, B. C. Edwards and A. Gibbs, "Measurements of optical refrigeration in ytterbiumdoped crystals," J. Appl. Phys. 90, 4815-4819 (2001).
[CrossRef]

2000 (1)

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, "Observation of anti-Stokes fluorescence cooling in thulium-doped glass," Phys. Rev. Lett. 85, 3600-3603 (2000).
[CrossRef] [PubMed]

1999 (1)

1995 (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, "Observation of laser-induced fluorescent cooling of a solid," Nature 377, 500-502 (1995).
[CrossRef]

1989 (1)

J. M. Parker, "Fluoride glasses," Annu. Rev. Mater. Sci. 19, 21-41 (1989).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

J. M. Parker, "Fluoride glasses," Annu. Rev. Mater. Sci. 19, 21-41 (1989).
[CrossRef]

Appl. Phys. Lett. (1)

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, "Cooling to 208 K by optical refrigeration," Appl. Phys. Lett. 86, 154107 (2005).
[CrossRef]

J. Appl. Phys. (2)

R. I. Epstein, J. J. Brown, B. C. Edwards and A. Gibbs, "Measurements of optical refrigeration in ytterbiumdoped crystals," J. Appl. Phys. 90, 4815-4819 (2001).
[CrossRef]

S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, M. Tonelli, and A. Di Lieto, "Spectroscopic and laser cooling results on Yb3+-doped BaY2F8single crystal," J. Appl. Phys. 100, 013109 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, "Observation of laser-induced fluorescent cooling of a solid," Nature 377, 500-502 (1995).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (3)

M. Sheik-Bahae and R. Epstein, "Can laser light cool semiconductors?," Phys. Rev. Lett. 92, 247403 (2004).
[CrossRef] [PubMed]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, "Observation of anti-Stokes fluorescence cooling in thulium-doped glass," Phys. Rev. Lett. 85, 3600-3603 (2000).
[CrossRef] [PubMed]

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, "Anti-Stokes laser cooling in bulk erbium-doped materials," Phys. Rev. Lett. 97, 033001 (2006).
[CrossRef] [PubMed]

Other (1)

R. I. Epstein and M. Sheik-Bahae, eds., Laser Cooling of Solids, Proc. SPIE (Bellingham, Washington, 2007) Vol. 6461.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Eb absorption (solid curve) and emission (dotted curve) spectra for our 1.2% Tm3+:BaY2F8 sample. The solid vertical line indicates the mean fluorescent wavelength at λF =1793 nm. In a laser cooling experiment, excitation takes place on the long wavelength side of this line in the shaded absorption region.

Fig. 2.
Fig. 2.

Eb-polarized absorption spectrum of 1.2% Tm3+:BaY2F8. The open circles represent the data obtained with the spectrometer, while the solid line indicates the absorption derived from the emission spectrum using the reciprocity relation shown in the text.

Fig. 3.
Fig. 3.

Wavelength-dependent temperature change normalized to pump power for BaY2F8 doped 1.2% Tm3+ for Eb. Data points below the horizontal reference line indicate net cooling. The solid curve is a fit as described in the text.

Fig. 4.
Fig. 4.

Cooling efficiency as a function of the pump wavelength for the 1.2% Tm3+-BaY2F8 crystal. The theoretical prediction (solid line) and experimental data (dots) are shown for Eb.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ abs γ = Z u Z l σ em γ exp   [ ( hc λ E ZPL ) k T ] λ 5 I γ ( λ ) e hc λ k T
Δ T P κ   [ α B + α R ( λ ) ( 1 η q ) α R ( λ ) η q λ λ F λ F ]
P abs = P in ( 1 e α )
P cool = P heat = ε s σ A ( T c 4 T s 4 )

Metrics