Abstract

An efficient diode-pumped Yb:NaY(WO4)2 (Yb:NYW) disordered crystal laser has been experimentally demonstrated for the fist time. The Yb:NYW crystal has a peak absorption cross section of 1.09×10-20 cm2 at 972 nm and emission cross section of 1.24×10-20 cm2 at 1010 nm. Under an absorbed pump power of 11.7 W, the Yb:NYW laser generated an average output power as high as 4.1 W, with a slope efficiency of 45%. It was found that the laser always operated in a self-pulsing mode, and the laser spectrum showed random jumps with time. The mechanism of self-pulsing in the laser was also investigated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Dong, A. Shirakawa, K. Ueda, J. Xu, and P. Z. Deng, "Efficient laser oscillation of Yb : Y3Al5O12 single crystal grown by temperature gradient technique," Appl. Phys. Lett. 88, 161115 (2006).
    [CrossRef]
  2. D. Jaque, J. C. Lagomacini, C. Jacinto, and T. Catunda, "Continuous-wave diode-pumped Yb : glass laser with near 90% slope efficiency," Appl. Phys. Lett. 89, 121101 (2006).
    [CrossRef]
  3. J. H. Liu, X. Mateos, H. J. Zhang, J. Y. Wang, M. H. Jiang, U. Grielmer, and V. Petrov, "Characteristics of a continuous-wave Yb : GdVO4 laser end pumped by a high-power diode, " Opt. Lett. 31, 2580-2582 (2006).
    [CrossRef] [PubMed]
  4. F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, "Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 high-power femtosecond laser operation," Opt. Lett. 31, 1555-1557 (2006).
    [CrossRef] [PubMed]
  5. G. R. Holtom, "Mode-locked Yb : KGW laser longitudinally pumped by polarization-coupled diode bars," Opt. Lett. 31, 2719-2721 (2006).
    [CrossRef] [PubMed]
  6. J. H. Liu, V. Petrov, H. J. Zhang, J. Y. Wang, and M. H. Jiang, "Efficient passively Q-switched laser operation of Yb in the disordered NdGd(WO4)2 crystal host," Opt. Lett. 32, 1728-1730 (2007).
    [CrossRef] [PubMed]
  7. C. Cascales, M. D. Serrano, F. Esteban-Betegon, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupre, M. Rico, J. Liu, U. Griebner, and V. Petrov, "Structural, spectroscopic, and tunable laser properties of Yb3+-doped NaGd(WO4)(2)," Phys. Rev. B 74, 174114 (2006).
    [CrossRef]
  8. J. Liu, J. M. Cano-Torres, C. Cascales, F. Esteban-Betegon, M. D. Serrano, V. Volkov, C. Zaldo, M. Rico, U. Griebner, and V. Petrov, "Growth and continuous-wave laser operation of disordered crystals of Yb (3+): NaLa(WO4)(2) and Yb3+: NaLa(MoO4)(2)," Phys. Status Solidi A. 202, R29-R31 (2005).
    [CrossRef]
  9. A. Garcia-Cortes, J. M. Cano-Torres, X. Han, C. Cascales, C. Zaldo, X. Mateos, S. Rivier, U. Griebner, V. Petrov, and F. J. Valle, "Tunable continuous wave and femtosecond mode-locked Yb3+ laser operation in NaLu(WO4)(2)," J. Appl. Phys. 101, 063110 (2007).
    [CrossRef]
  10. X. Mateos, S. Rivier, U. Griebner, V. Petrov, A. Garcia-Cortes, J. M. Cano-Torres, M. D. Serrano, C. Cascales, and C. Zaldo, "Tunable laser operation of Yb:NYW," in Conference on Lasers and Electro-Optics/ Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2007 Technical Digest (Optical Society of America, Washington, DC, 2007), CFJ4.
    [PubMed]
  11. A. Garcia-Cortes, J. M. Cano-Torres, M. D. Serrano, C. Cascales, C. Zaldo, S. Rivier, X. Mateos, U. Griebner, and V. Petrov, "Spectroscopy and lasing of Yb-doped NaY(WO4)2: tunable and femtosecond mode-locked laser operation," IEEE J. Quantum Electron. 43, 758-764 (2007).
    [CrossRef]
  12. H. B. Yin, P. Z. Deng, J. Z. Zhang, and F. X. Gan, "Determination of emission cross section of Yb3+ in glasses by the reciprocity method," Mater. Lett. 30, 29-33 (1997).
    [CrossRef]
  13. W. J. Xie, Y. Kwon, S. C. Tam, and Y. L. Lam, "Diffraction losses of Nd:YAG and Yb:YAG laser crystals," Opt. Laser Technol. 33, 129-134 (2001).
    [CrossRef]
  14. H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. F. Cheng, Z. S. Shao, M. H. Jiang, Z. C. Ling, and H. R. Xia, "Characterization of mixed Nd : LuxGd1-xVO4 laser crystals," J. Appl. Phys. 101, 113109 (2007).
    [CrossRef]
  15. J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, "9.2-W diode-end-pumped Yb:Y2O3 ceramic laser," Appl. Phys. Lett. 86, 161116 (2005).
    [CrossRef]
  16. G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, "High-power self-mode-locked Yb : Y2O3 ceramic laser," Opt. Lett. 32, 2741-2743 (2007).
    [CrossRef] [PubMed]
  17. J. Kong, D. Y. Tang, J. Lu, and K. Ueda, "Random-wavelength solid-state laser," Opt. Lett. 29, 65-67 (2004).
    [CrossRef] [PubMed]
  18. W. X. Li, H. F. Pan, L. E. Ding, H. P. Zeng, W. Lu, G. J. Zhao, C. F. Yan, L. B. Su, and J. Xu, "Efficient diode-pumped Yb:Gd2SiO5 laser," Appl. Phys. Lett. 88, 221117 (2006).
    [CrossRef]

2007 (5)

A. Garcia-Cortes, J. M. Cano-Torres, X. Han, C. Cascales, C. Zaldo, X. Mateos, S. Rivier, U. Griebner, V. Petrov, and F. J. Valle, "Tunable continuous wave and femtosecond mode-locked Yb3+ laser operation in NaLu(WO4)(2)," J. Appl. Phys. 101, 063110 (2007).
[CrossRef]

A. Garcia-Cortes, J. M. Cano-Torres, M. D. Serrano, C. Cascales, C. Zaldo, S. Rivier, X. Mateos, U. Griebner, and V. Petrov, "Spectroscopy and lasing of Yb-doped NaY(WO4)2: tunable and femtosecond mode-locked laser operation," IEEE J. Quantum Electron. 43, 758-764 (2007).
[CrossRef]

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. F. Cheng, Z. S. Shao, M. H. Jiang, Z. C. Ling, and H. R. Xia, "Characterization of mixed Nd : LuxGd1-xVO4 laser crystals," J. Appl. Phys. 101, 113109 (2007).
[CrossRef]

J. H. Liu, V. Petrov, H. J. Zhang, J. Y. Wang, and M. H. Jiang, "Efficient passively Q-switched laser operation of Yb in the disordered NdGd(WO4)2 crystal host," Opt. Lett. 32, 1728-1730 (2007).
[CrossRef] [PubMed]

G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, "High-power self-mode-locked Yb : Y2O3 ceramic laser," Opt. Lett. 32, 2741-2743 (2007).
[CrossRef] [PubMed]

2006 (7)

F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, "Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 high-power femtosecond laser operation," Opt. Lett. 31, 1555-1557 (2006).
[CrossRef] [PubMed]

J. H. Liu, X. Mateos, H. J. Zhang, J. Y. Wang, M. H. Jiang, U. Grielmer, and V. Petrov, "Characteristics of a continuous-wave Yb : GdVO4 laser end pumped by a high-power diode, " Opt. Lett. 31, 2580-2582 (2006).
[CrossRef] [PubMed]

G. R. Holtom, "Mode-locked Yb : KGW laser longitudinally pumped by polarization-coupled diode bars," Opt. Lett. 31, 2719-2721 (2006).
[CrossRef] [PubMed]

C. Cascales, M. D. Serrano, F. Esteban-Betegon, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupre, M. Rico, J. Liu, U. Griebner, and V. Petrov, "Structural, spectroscopic, and tunable laser properties of Yb3+-doped NaGd(WO4)(2)," Phys. Rev. B 74, 174114 (2006).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, J. Xu, and P. Z. Deng, "Efficient laser oscillation of Yb : Y3Al5O12 single crystal grown by temperature gradient technique," Appl. Phys. Lett. 88, 161115 (2006).
[CrossRef]

D. Jaque, J. C. Lagomacini, C. Jacinto, and T. Catunda, "Continuous-wave diode-pumped Yb : glass laser with near 90% slope efficiency," Appl. Phys. Lett. 89, 121101 (2006).
[CrossRef]

W. X. Li, H. F. Pan, L. E. Ding, H. P. Zeng, W. Lu, G. J. Zhao, C. F. Yan, L. B. Su, and J. Xu, "Efficient diode-pumped Yb:Gd2SiO5 laser," Appl. Phys. Lett. 88, 221117 (2006).
[CrossRef]

2005 (2)

J. Liu, J. M. Cano-Torres, C. Cascales, F. Esteban-Betegon, M. D. Serrano, V. Volkov, C. Zaldo, M. Rico, U. Griebner, and V. Petrov, "Growth and continuous-wave laser operation of disordered crystals of Yb (3+): NaLa(WO4)(2) and Yb3+: NaLa(MoO4)(2)," Phys. Status Solidi A. 202, R29-R31 (2005).
[CrossRef]

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, "9.2-W diode-end-pumped Yb:Y2O3 ceramic laser," Appl. Phys. Lett. 86, 161116 (2005).
[CrossRef]

2004 (1)

2001 (1)

W. J. Xie, Y. Kwon, S. C. Tam, and Y. L. Lam, "Diffraction losses of Nd:YAG and Yb:YAG laser crystals," Opt. Laser Technol. 33, 129-134 (2001).
[CrossRef]

1997 (1)

H. B. Yin, P. Z. Deng, J. Z. Zhang, and F. X. Gan, "Determination of emission cross section of Yb3+ in glasses by the reciprocity method," Mater. Lett. 30, 29-33 (1997).
[CrossRef]

. (1)

J. Liu, J. M. Cano-Torres, C. Cascales, F. Esteban-Betegon, M. D. Serrano, V. Volkov, C. Zaldo, M. Rico, U. Griebner, and V. Petrov, "Growth and continuous-wave laser operation of disordered crystals of Yb (3+): NaLa(WO4)(2) and Yb3+: NaLa(MoO4)(2)," Phys. Status Solidi A. 202, R29-R31 (2005).
[CrossRef]

Appl. Phys. Lett. (4)

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, "9.2-W diode-end-pumped Yb:Y2O3 ceramic laser," Appl. Phys. Lett. 86, 161116 (2005).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, J. Xu, and P. Z. Deng, "Efficient laser oscillation of Yb : Y3Al5O12 single crystal grown by temperature gradient technique," Appl. Phys. Lett. 88, 161115 (2006).
[CrossRef]

D. Jaque, J. C. Lagomacini, C. Jacinto, and T. Catunda, "Continuous-wave diode-pumped Yb : glass laser with near 90% slope efficiency," Appl. Phys. Lett. 89, 121101 (2006).
[CrossRef]

W. X. Li, H. F. Pan, L. E. Ding, H. P. Zeng, W. Lu, G. J. Zhao, C. F. Yan, L. B. Su, and J. Xu, "Efficient diode-pumped Yb:Gd2SiO5 laser," Appl. Phys. Lett. 88, 221117 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Garcia-Cortes, J. M. Cano-Torres, M. D. Serrano, C. Cascales, C. Zaldo, S. Rivier, X. Mateos, U. Griebner, and V. Petrov, "Spectroscopy and lasing of Yb-doped NaY(WO4)2: tunable and femtosecond mode-locked laser operation," IEEE J. Quantum Electron. 43, 758-764 (2007).
[CrossRef]

J. Appl. Phys. (2)

A. Garcia-Cortes, J. M. Cano-Torres, X. Han, C. Cascales, C. Zaldo, X. Mateos, S. Rivier, U. Griebner, V. Petrov, and F. J. Valle, "Tunable continuous wave and femtosecond mode-locked Yb3+ laser operation in NaLu(WO4)(2)," J. Appl. Phys. 101, 063110 (2007).
[CrossRef]

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. F. Cheng, Z. S. Shao, M. H. Jiang, Z. C. Ling, and H. R. Xia, "Characterization of mixed Nd : LuxGd1-xVO4 laser crystals," J. Appl. Phys. 101, 113109 (2007).
[CrossRef]

Mater. Lett. (1)

H. B. Yin, P. Z. Deng, J. Z. Zhang, and F. X. Gan, "Determination of emission cross section of Yb3+ in glasses by the reciprocity method," Mater. Lett. 30, 29-33 (1997).
[CrossRef]

Opt. Laser Technol. (1)

W. J. Xie, Y. Kwon, S. C. Tam, and Y. L. Lam, "Diffraction losses of Nd:YAG and Yb:YAG laser crystals," Opt. Laser Technol. 33, 129-134 (2001).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. B (1)

C. Cascales, M. D. Serrano, F. Esteban-Betegon, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupre, M. Rico, J. Liu, U. Griebner, and V. Petrov, "Structural, spectroscopic, and tunable laser properties of Yb3+-doped NaGd(WO4)(2)," Phys. Rev. B 74, 174114 (2006).
[CrossRef]

Other (1)

X. Mateos, S. Rivier, U. Griebner, V. Petrov, A. Garcia-Cortes, J. M. Cano-Torres, M. D. Serrano, C. Cascales, and C. Zaldo, "Tunable laser operation of Yb:NYW," in Conference on Lasers and Electro-Optics/ Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2007 Technical Digest (Optical Society of America, Washington, DC, 2007), CFJ4.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Absorption spectrum and (b) emission spectrum of the Yb:NYW sample.

Fig. 2.
Fig. 2.

The schematic laser setup. LD: laser diode; ROC: radius of curvature.

Fig. 3.
Fig. 3.

Average output power versus absorbed pump power under different cooling-water temperatures.

Fig. 4.
Fig. 4.

(a) A typical pulse train generated by the self-pulsed Yb:NYW laser, (b) temporal profile of single pulse, (c) pulse repetition rate and (d) pulse width as functions of absorbed pump power.

Fig. 5.
Fig. 5.

The laser spectra measured at three consecutive instants.

Tables (1)

Tables Icon

Table 1. The measured thermal parameters of different tungstate compounds

Metrics