Abstract

Silicon is an extremely attractive material platform for integrated optics at telecommunications wavelengths, particularly for integration with CMOS circuits. Developing detectors and electrically pumped lasers at telecom wavelengths are the two main technological hurdles before silicon can become a comprehensive platform for integrated optics. We report on a photocurrent in unimplanted SOI ridge waveguides, which we attribute to surface state absorption. By electrically contacting the waveguides, a photodetector with a responsivity of 36 mA/W and quantum efficiency of 2.8% is demonstrated. The response is shown to have minimal falloff at speeds of up to 60 Mhz.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. Lipson, "Guiding, modulating, and emitting light on silicon - Challenges and opportunities," J. of Lightwave Technol. 23, 4222-4238 (2005).
    [CrossRef]
  2. B. Jalali and S. Fathpour, "Silicon photonics," J. of Lightwave Technol. 24, 4600-4615 (2006).
    [CrossRef]
  3. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q resonators in thin silicon-on-insulator," Appl. Phys. Lett. 85, 3346-3347 (2004).
    [CrossRef]
  4. C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, "An optical fiber-taper probe for wafer-scale microphotonic device characterization," Opt. Express 15, 4745-4752 (2007).
    [CrossRef] [PubMed]
  5. A. Liu,  et al. "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007).
    [CrossRef] [PubMed]
  6. V. Almeida, R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
    [CrossRef] [PubMed]
  7. A. Liu, R. Jones, O. Cohen, D. Hak, and M. Paniccia, "Optical amplification and lasing by stimulated raman scattering in silicon waveguides," J. of Lightwave Technol. 24, 1440-1455 (2006).
    [CrossRef]
  8. R. A. Soref, "Single-Crystal silicon - a new material for 1.3 and 1.6 mu-m integrated-optical components," Electron Lett. 21, 953-954 (1985).
    [CrossRef]
  9. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements," Appl. Phys. Lett. 81, 1323-1325 (2002).
    [CrossRef]
  10. G. Roelkens, D. Van Thourhout, R. Baets, R. Notzel, and M. Smit, "Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit," Opt. Express 14, 8154-8159 (2006).
    [CrossRef] [PubMed]
  11. J. Liu, D. Pan, S. Jongthammanurak, K. Wanda, L. Kimerling, and J. Michel, "Design of monolithically integrated GeSi electroabsorption modulators and photodetectors on an SOI platform," Opt. Express 15, 623-628 (2007).
    [CrossRef] [PubMed]
  12. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, "CMOS-compatible all-si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007).
    [CrossRef]
  13. M. Borselli, T. Johnson, O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005).
    [CrossRef] [PubMed]
  14. V. Almeida, R. Panepucci, M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
    [CrossRef] [PubMed]
  15. S. Fathpour, K. Tsia, B. Jalali, "Energy harvesting in silicon Raman amplifiers," Appl. Phys. Lett. 89, 061109 (2006).
    [CrossRef]
  16. D. Taillaert,  et al. "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
    [CrossRef]
  17. M. Casalino, L. Sirleto, L. Moretti, F. Della Corte, and I. Rendina, "Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 μm," J. Opt. A., Pure Appl. Opt. 8, 909-913 (2006).
    [CrossRef]
  18. S. M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, 1981).
  19. T. Baehr-Jones and M. Hochberg, Caltech, 1200 East California Blvd, Pasadena, California, 91125, USA are preparing a manuscript entitled "All optical modulation in a silicon waveguide based on a single photon process."
  20. D. Lide, CRC Handbook of Chemistry and Physics (CRC Press, 2006). T. Baehr-Jones, et al. "Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators," IEEE J. Lightwave Technol. 23, 4215-4221 (2005).
  21. Y. Liu, C. W. Chow, W. Y. Cheung, H. K. Tsang, "In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides." IEEE Photon. Technol. Lett. 18, 1882-1884 (2006).
    [CrossRef]

2007

2006

S. Fathpour, K. Tsia, B. Jalali, "Energy harvesting in silicon Raman amplifiers," Appl. Phys. Lett. 89, 061109 (2006).
[CrossRef]

M. Casalino, L. Sirleto, L. Moretti, F. Della Corte, and I. Rendina, "Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 μm," J. Opt. A., Pure Appl. Opt. 8, 909-913 (2006).
[CrossRef]

Y. Liu, C. W. Chow, W. Y. Cheung, H. K. Tsang, "In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides." IEEE Photon. Technol. Lett. 18, 1882-1884 (2006).
[CrossRef]

B. Jalali and S. Fathpour, "Silicon photonics," J. of Lightwave Technol. 24, 4600-4615 (2006).
[CrossRef]

A. Liu, R. Jones, O. Cohen, D. Hak, and M. Paniccia, "Optical amplification and lasing by stimulated raman scattering in silicon waveguides," J. of Lightwave Technol. 24, 1440-1455 (2006).
[CrossRef]

G. Roelkens, D. Van Thourhout, R. Baets, R. Notzel, and M. Smit, "Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit," Opt. Express 14, 8154-8159 (2006).
[CrossRef] [PubMed]

2005

M. Lipson, "Guiding, modulating, and emitting light on silicon - Challenges and opportunities," J. of Lightwave Technol. 23, 4222-4238 (2005).
[CrossRef]

M. Borselli, T. Johnson, O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005).
[CrossRef] [PubMed]

2004

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q resonators in thin silicon-on-insulator," Appl. Phys. Lett. 85, 3346-3347 (2004).
[CrossRef]

2003

2002

D. Taillaert,  et al. "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements," Appl. Phys. Lett. 81, 1323-1325 (2002).
[CrossRef]

1985

R. A. Soref, "Single-Crystal silicon - a new material for 1.3 and 1.6 mu-m integrated-optical components," Electron Lett. 21, 953-954 (1985).
[CrossRef]

Appl. Phys. Lett.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q resonators in thin silicon-on-insulator," Appl. Phys. Lett. 85, 3346-3347 (2004).
[CrossRef]

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements," Appl. Phys. Lett. 81, 1323-1325 (2002).
[CrossRef]

S. Fathpour, K. Tsia, B. Jalali, "Energy harvesting in silicon Raman amplifiers," Appl. Phys. Lett. 89, 061109 (2006).
[CrossRef]

Electron Lett.

R. A. Soref, "Single-Crystal silicon - a new material for 1.3 and 1.6 mu-m integrated-optical components," Electron Lett. 21, 953-954 (1985).
[CrossRef]

IEEE J. Quantum Electron.

D. Taillaert,  et al. "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, "CMOS-compatible all-si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007).
[CrossRef]

Y. Liu, C. W. Chow, W. Y. Cheung, H. K. Tsang, "In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides." IEEE Photon. Technol. Lett. 18, 1882-1884 (2006).
[CrossRef]

J. of Lightwave Technol.

A. Liu, R. Jones, O. Cohen, D. Hak, and M. Paniccia, "Optical amplification and lasing by stimulated raman scattering in silicon waveguides," J. of Lightwave Technol. 24, 1440-1455 (2006).
[CrossRef]

M. Lipson, "Guiding, modulating, and emitting light on silicon - Challenges and opportunities," J. of Lightwave Technol. 23, 4222-4238 (2005).
[CrossRef]

B. Jalali and S. Fathpour, "Silicon photonics," J. of Lightwave Technol. 24, 4600-4615 (2006).
[CrossRef]

J. Opt. A., Pure Appl. Opt.

M. Casalino, L. Sirleto, L. Moretti, F. Della Corte, and I. Rendina, "Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 μm," J. Opt. A., Pure Appl. Opt. 8, 909-913 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Other

S. M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, 1981).

T. Baehr-Jones and M. Hochberg, Caltech, 1200 East California Blvd, Pasadena, California, 91125, USA are preparing a manuscript entitled "All optical modulation in a silicon waveguide based on a single photon process."

D. Lide, CRC Handbook of Chemistry and Physics (CRC Press, 2006). T. Baehr-Jones, et al. "Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators," IEEE J. Lightwave Technol. 23, 4215-4221 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Panel A: A diagram of the waveguide cross section, with the modal pattern for the TE-1 mode overlaid. Contours are drawn in |E| in increments of 10% of max value. For a propagating power of 1 W, the peak electric field will be 108 V/m, In addition, a plot of Ex across the center of the waveguide (dashed line) is shown. Panel B: SEM micrograph of a detector device of type B. C: Another SEM micrograph of a device of type B. A ridge waveguide is contacted by a series of tiny, conductive arms. The optical mode is tightly confined to the ridge waveguide, and does not appreciably touch the metal pads or the surrounding silicon layer.

Fig. 2.
Fig. 2.

Panel A: A detector of type A. The photoconduction region consists of the loop of the ridge waveguide, while the grating couplers are connected to the metal electrodes. Panel B: A detector of type B. Here the photoconduction region is the intersection of the conduction arms and the waveguide. Panel C: The equivalent circuit, with Rp the photoconductive resistor, and Rm the resistance of the measuring apparatus. The diodes present in the circuit are due to the metal-semiconductor interface. Panel D: A diagram of the entire experimental setup. For DC I-V curves, the lockin would be replaced with a picoammeter.

Fig. 3.
Fig. 3.

Panel A: DC I-V curves for device A1. Panel B: DC I-V curves for device B1. The power of the test laser used, as well as the propagating laser power in each device is labeled. Slightly different optical paths used in each series of tests result in different levels of propagating power for the same laser power. Current in nA is plotted against voltage in V. Note that panel a shows significantly more rectifying behavior, because there are only two small contacts to the waveguide in this case, while in the case of b there were 40 contacts to the guide. Panel C: The peak to peak output photocurrent of device B2 as a function of frequency. There is minimal change in performance from DC to approximately 60 MHz, where testing was stopped due to limitations of the noise environment where the devices were being tested.

Fig. 4.
Fig. 4.

Panel A: Photocurrent as a function of propagating laser power for several bias voltages. The peak to peak photocurrent in nA is reported as well as the peak to peak optical power in the waveguide in mW. The response that would be observed with a perfectly linear 1.5 mA/W and 36 mA/W detector are also shown. Panel B: The photocurrent in peak to peak nA of the device for a 11 V bias voltages and several peak to peak laser powers as a function of frequency up to 1 MHz. In both cases, a logarithmic plot has been used.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

EHP s   ·   cm = σ I
R = q σ L
α > = hv σ

Metrics