Abstract

The new compact polarization rotator in anisotropic graded index Ti:LiNbO3 channel waveguide is proposed and investigated by 3D beam propagation method (BPM). Device is based on a channel optical waveguide directed at small angle (about 5 degrees) with respect to Z-axis on Y-cut lithium niobate substrate. The polarization conversion from quasi-TE to quasi-TM guided modes (and backwards) along 8 mm long waveguide with an index contrast 0.015, has been numerically demonstrated. Device is intended for polarization diversity of integrated optic elements based on LiNbO3 structures.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y. Inoue, H. Takahashi, S. Ando, T. Sawada, A. Himeno, and M. Kawachi, "Elimination of polarization sensitivity in silica-based wavelength division multiplexer using a polyimide half waveplate," J. Lightwave Technol. 15, 1947-1957 (1997).
    [CrossRef]
  2. W. Lui, T. Hirono, K. Yokoyama, and W. Huang, "Polarization rotation in semiconductor bending waveguides: A coupled-mode theory formulation," J. Lightwave Technol. 16, 929-936 (1998).
    [CrossRef]
  3. J. Z. Huang, R. Scarmozzino, G. Nagy, M. J. Steel, and R. M. OsgoodJr, "Realization of a compact and single-mode optical polarization converter," IEEE Photon. Technol. Lett. 12, 317-319 (2000).
    [CrossRef]
  4. M. Watts and H. Haus, "Integrated mode-evolution-based polarization rotators," Opt. Lett. 30, 138-140 (2005).
    [CrossRef] [PubMed]
  5. J. Ctyroky, M. Cada, "Generalized WKB method for the analysis of light propagation in inhomogeneous anisotropic optical waveguides," IEEE J. Quantum Electron. 17, 1064-1070 (1981).
    [CrossRef]
  6. E. M. Zolotov, V. A. Kiselev, V. M. Pelekhaty, A. M. Prokhorov, V. A. Chernykh, E. A. Sherbakov, "A study of anisotropic optical diffuse waveguides in LiNbO3," Quantum Electron. (Rus) 5, 1379-1381 (1978).
  7. E. A. Kolosovsky, D. V. Petrov, A. V. Tsarev, and I. B. Yakovkin, "An exact method for analyzing light propagation in anisotropic inhomogeneous optical waveguide," Opt. Commun. 43, 21-25 (1982).
    [CrossRef]
  8. A. Tsarev, "The new design and numerical simulation by 3D BPM of new compact polarisation rotator in anisotropic LiNbO3 graded index waveguide," Proc. 13th Eur. Conf. on Int. Optics and Tech. Exhibition, Copenhagen, Denmark, ThG27 (2007).
  9. BeamPROP from RSoft Design Group, Inc, http://www.rsoftdesign.com.
  10. L. Bersiner, U. Hempelmann, and E. Strake, "Numerical analysis of passive integrated optical polarization splitters: comparison of finite-element method and beam-propagation method results," J. Opt. Soc. Am. B 8, 422-433, 1991.
    [CrossRef]

2005 (1)

2000 (1)

J. Z. Huang, R. Scarmozzino, G. Nagy, M. J. Steel, and R. M. OsgoodJr, "Realization of a compact and single-mode optical polarization converter," IEEE Photon. Technol. Lett. 12, 317-319 (2000).
[CrossRef]

1998 (1)

1997 (1)

Y. Inoue, H. Takahashi, S. Ando, T. Sawada, A. Himeno, and M. Kawachi, "Elimination of polarization sensitivity in silica-based wavelength division multiplexer using a polyimide half waveplate," J. Lightwave Technol. 15, 1947-1957 (1997).
[CrossRef]

1991 (1)

1982 (1)

E. A. Kolosovsky, D. V. Petrov, A. V. Tsarev, and I. B. Yakovkin, "An exact method for analyzing light propagation in anisotropic inhomogeneous optical waveguide," Opt. Commun. 43, 21-25 (1982).
[CrossRef]

1981 (1)

J. Ctyroky, M. Cada, "Generalized WKB method for the analysis of light propagation in inhomogeneous anisotropic optical waveguides," IEEE J. Quantum Electron. 17, 1064-1070 (1981).
[CrossRef]

1978 (1)

E. M. Zolotov, V. A. Kiselev, V. M. Pelekhaty, A. M. Prokhorov, V. A. Chernykh, E. A. Sherbakov, "A study of anisotropic optical diffuse waveguides in LiNbO3," Quantum Electron. (Rus) 5, 1379-1381 (1978).

IEEE J. Quantum Electron. (1)

J. Ctyroky, M. Cada, "Generalized WKB method for the analysis of light propagation in inhomogeneous anisotropic optical waveguides," IEEE J. Quantum Electron. 17, 1064-1070 (1981).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Z. Huang, R. Scarmozzino, G. Nagy, M. J. Steel, and R. M. OsgoodJr, "Realization of a compact and single-mode optical polarization converter," IEEE Photon. Technol. Lett. 12, 317-319 (2000).
[CrossRef]

J. Lightwave Technol. (2)

Y. Inoue, H. Takahashi, S. Ando, T. Sawada, A. Himeno, and M. Kawachi, "Elimination of polarization sensitivity in silica-based wavelength division multiplexer using a polyimide half waveplate," J. Lightwave Technol. 15, 1947-1957 (1997).
[CrossRef]

W. Lui, T. Hirono, K. Yokoyama, and W. Huang, "Polarization rotation in semiconductor bending waveguides: A coupled-mode theory formulation," J. Lightwave Technol. 16, 929-936 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

E. A. Kolosovsky, D. V. Petrov, A. V. Tsarev, and I. B. Yakovkin, "An exact method for analyzing light propagation in anisotropic inhomogeneous optical waveguide," Opt. Commun. 43, 21-25 (1982).
[CrossRef]

Opt. Lett. (1)

Quantum Electron. (Rus) (1)

E. M. Zolotov, V. A. Kiselev, V. M. Pelekhaty, A. M. Prokhorov, V. A. Chernykh, E. A. Sherbakov, "A study of anisotropic optical diffuse waveguides in LiNbO3," Quantum Electron. (Rus) 5, 1379-1381 (1978).

Other (2)

A. Tsarev, "The new design and numerical simulation by 3D BPM of new compact polarisation rotator in anisotropic LiNbO3 graded index waveguide," Proc. 13th Eur. Conf. on Int. Optics and Tech. Exhibition, Copenhagen, Denmark, ThG27 (2007).

BeamPROP from RSoft Design Group, Inc, http://www.rsoftdesign.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Simulated distribution of refractive index in channel waveguide (w=13 µm, h=2.4 µm, Δn=0.015).

Fig. 2.
Fig. 2.

Simulated distribution of optical field of guided modes in diffused waveguide of Fig. 1. (a) quasi-TE mode, (b) quasi-TM mode. (θ=0).

Fig. 3.
Fig. 3.

3D BPM simulation of polarization conversion in anisotropic channel waveguide directed at angle θ=5.27°. Input polarizations: quasi-TE.

Fig. 4.
Fig. 4.

Normalized results of 3D BPM simulation of power transmittance T in anisotropic channel waveguide directed at angle θ=5.27°. Input polarizations: (a) quasi-TE; (b) quasi-TM.

Fig. 5.
Fig. 5.

3D BPM simulation of polarization conversion from quasi-TE to quasi-TM at different angle θ relative to Z -axis in Y -cut Ti:LiNbO3. L0 =7.8 mm. (a) quasi-TE; (b) quasi-TM.

Fig. 6.
Fig. 6.

3D BPM simulation of polarization conversion from quasi-TM to quasi-TE modes at different optical wavelengths in an anisotropic channel waveguide directed at angle θ=5.27°. L0 =7.8 mm. (a) quasi-TE; (b) quasi-TM.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n ( x , y ) = n 0 + Δ n · g ( x ) · f ( y )
g ( x ) = 1 2 { erf [ ( w 2 + x ) h x ] + erf [ ( w 2 x ) h x ] }
f ( y ) = exp [ ( y h y ) 2 ]

Metrics