Abstract

We show that the temperature dependence of a silicon waveguide can be controlled well by using a slot waveguide structure filled with a polymer material. Without a slot, the amount of temperature-dependent wavelength shift for TE mode of a silicon waveguide ring resonator is very slightly reduced from 77 pm/°C to 66 pm/°C by using a polymer (WIR30-490) upper cladding instead of air upper cladding. With a slot filled with the same polymer, however, the reduction of the temperature dependence is improved by a pronounced amount and can be controlled down to -2 pm/°C by adjusting several variables of the slot structure, such as the width of the slot between the pair of silicon wires, the width of the silicon wire pair, and the height of the silicon slab in our experiment. This measurement proves that a reduction in temperature dependence can be improved about 8 times more by using the slot structure.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. Gunn, A. Narasimha, B. Analui, Y. Liang, and T. J. Sleboda, "A 40Gb/s silicon photonics transceiver," Proceedings of SPIE 6477, 64770N (2007).
    [CrossRef]
  2. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators," Opt. Express,  15430-436 (2007).
    [CrossRef] [PubMed]
  3. Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, "Cascaded silicon micro-ring modulators for WDM optical interconnection," Opt. Express 14, 9430-9435 (2006).
    [CrossRef]
  4. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007).
    [CrossRef] [PubMed]
  5. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express 14, 9203-9210 (2006).
    [CrossRef] [PubMed]
  6. P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. V. Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, "Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides," Jpn. J. Appl. Phys. 45, 6589-6602 (2006).
    [CrossRef]
  7. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004).
    [CrossRef] [PubMed]
  8. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
    [CrossRef]
  9. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005).
    [CrossRef] [PubMed]
  10. P. A, Anderson, B. S. Schmidt, and M. Lipson, "High confinement in silicon slot waveguides with sharp bends," Opt. Express 14, 9197-9202 (2006).
    [CrossRef] [PubMed]
  11. N.-N. Feng, R. Sun, L. C. Kimerling, and J. Michel, "Lossless strip-to-slot waveguide transformer," Opt. Lett. 32, 1250-1252 (2007).
    [CrossRef] [PubMed]
  12. J.-M. Lee, D.-J. Kim, H.-K. Ahn, S.-H. Park and G. Kim, "Temperature dependence of silicon nano-photonic ring resonator with a polymeric over layer," J. Lightwave Technol. 25, 2236-2243 (2007).
    [CrossRef]
  13. P. Dumon, "Ultra-compact integrated optical filters in silicon-on-insulator by means of wafer-scale technology," PhD Thesis, Ghent University (2007).
  14. T. Baehr-Jones, M. Hochberg, C. Walker, E. Chan, D. Koshinz, W. Krug, and A. Scherer, "Analysis of the tuning Sensitivity of silicon-on-insulator optical ring resonators," J. Lightwave Technol. 23, 4215-4221 (2005).
    [CrossRef]
  15. Sai T. Chu, Wugen Pan, Shuichi Suzuki, Brent E. Little, Shinya Sato, and Yasuo Kokubun, "Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay," IEEE Photon. Technol. Lett. 11, 1138-1140 (1999).
    [CrossRef]
  16. N. Keil, H.H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer and J. Schneider, "Athermal all-polymer arrayed-waveguide grating multiplexer," Electron. Lett. 37, 579-580 (2001).
    [CrossRef]

2007 (5)

2006 (4)

P. A, Anderson, B. S. Schmidt, and M. Lipson, "High confinement in silicon slot waveguides with sharp bends," Opt. Express 14, 9197-9202 (2006).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, "Cascaded silicon micro-ring modulators for WDM optical interconnection," Opt. Express 14, 9430-9435 (2006).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express 14, 9203-9210 (2006).
[CrossRef] [PubMed]

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. V. Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, "Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides," Jpn. J. Appl. Phys. 45, 6589-6602 (2006).
[CrossRef]

2005 (3)

2004 (1)

2001 (1)

N. Keil, H.H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer and J. Schneider, "Athermal all-polymer arrayed-waveguide grating multiplexer," Electron. Lett. 37, 579-580 (2001).
[CrossRef]

1999 (1)

Sai T. Chu, Wugen Pan, Shuichi Suzuki, Brent E. Little, Shinya Sato, and Yasuo Kokubun, "Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay," IEEE Photon. Technol. Lett. 11, 1138-1140 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

Electron. Lett. (1)

N. Keil, H.H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer and J. Schneider, "Athermal all-polymer arrayed-waveguide grating multiplexer," Electron. Lett. 37, 579-580 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Sai T. Chu, Wugen Pan, Shuichi Suzuki, Brent E. Little, Shinya Sato, and Yasuo Kokubun, "Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay," IEEE Photon. Technol. Lett. 11, 1138-1140 (1999).
[CrossRef]

J. Lightwave Technol. (2)

Jpn. J. Appl. Phys. (1)

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. V. Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, "Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides," Jpn. J. Appl. Phys. 45, 6589-6602 (2006).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Proceedings of SPIE (1)

C. Gunn, A. Narasimha, B. Analui, Y. Liang, and T. J. Sleboda, "A 40Gb/s silicon photonics transceiver," Proceedings of SPIE 6477, 64770N (2007).
[CrossRef]

Other (1)

P. Dumon, "Ultra-compact integrated optical filters in silicon-on-insulator by means of wafer-scale technology," PhD Thesis, Ghent University (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

SEM images of silicon slot waveguide ring resonator in (a) and (b); cross-sectional view of (a) in (c); and schematic diagram of (b) in (d) [not to scale for (c) and (d)].

Fig. 2.
Fig. 2.

Theoretically calculated TDWS in ring resonators, depending on the width of the slot; in case of total width of silicon-wires of 500 nm covered by oxide (Oxide_500), air (Air_500), ZP49 (ZP49_500), and WIR30-490 (WIR_500); 550 nm covered by WIR30-490 (WIR_550); and 600 nm covered by WIR30-490 (WIR_600), respectively.

Fig. 3.
Fig. 3.

Theoretically calculated TDWS in ring resonators depending on the height of the slab of a rib-type slot waveguide covered by WIR30-490; with the total width of silicon-wires of 500 nm; and with the width of the slot of 50 nm (WIR_500_s50), 80 nm (WIR_500_s80), and 100 nm (WIR_500_s100), respectively.

Fig. 4.
Fig. 4.

Measured transmission spectra of ring resonators; (a) for a waveguide without a slot covered by ZP49; (b) for a 120 nm-wide slot waveguide covered by ZP49; (c) for a 110 nm-wide slot waveguide covered by WIR30-490; and (d) for a 90 nm-wide slot waveguide covered by WIR30-490.

Fig. 5.
Fig. 5.

Measured temperature-dependent wavelength shifts of ring resonators. S0_Air, S0_ZP, and S0_WIR are for waveguides without a slot but with different upper claddings: air, ZP49 and WIR30-490, respectively. S90_ZP and S120_ZP are for 90 nm-wide and 120 nm-wide slot waveguides, respectively, with a ZP49 upper cladding. S90_WIR and S110_WIR are for 90 nm-wide and 110 nm-wide slot waveguides, respectively, with a WIR30-490 upper cladding. SR90_WIR is for a rib-type 90 nm-wide slot waveguide with a WIR30-490 upper cladding.

Fig. 6.
Fig. 6.

Measured transmission spectra of a ring resonator composed of a rib-type 90 nm-wide slot waveguide covered by WIR30-490.

Fig. 7.
Fig. 7.

Comparison of measured data with theoretically calculated TDWS of ring resonators, depending on the width of the slot. ZP49_500_Exp represents measured data for slots covered by ZP49, WIR_500_Exp for slots covered by WIR30-490, and WIR_500_s20_Exp for a rib-type slot with a 20 nm slab covered by WIR30-490.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d λ 0 d T = λ 0 N g × ( dNeff d T + Neff × α ) ,
Ng = Neff λ × dNeff .

Metrics