Abstract

In this paper we introduce Nanoscale Optofluidic Sensor Arrays (NOSAs), which are an optofluidic architecture for performing highly parallel, label free detection of biomolecular interactions in aqueous environments. The architecture is based on the use of arrays of 1D photonic crystal resonators which are evanescently coupled to a single bus waveguide. Each resonator has a slightly different cavity spacing and is shown to independently shift its resonant peak in response to changes in refractive index in the region surrounding its cavity. We demonstrate through numerical simulation that by confining biomolecular binding to this region, limits of detection on the order of tens of attograms (ag) are possible. Experimental results demonstrate a refractive index (RI) detection limit of 7×10-5 for this device. While other techniques such as SPR possess an equivalent RI detection limit, the advantage of this architecture lies in its potential for low mass limit of detection which is enabled by confining the size of the probed surface area.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Erickson, S. Mandal, A. Yang, and B. Cordovez, "Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale," Microfluidics and Nanofluidics 4, 33-52 (2008).
    [CrossRef] [PubMed]
  2. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, "Integrated optical Mach-Zehnder biosensor," J. Lightwave Technol. 16, 583-592 (1998).
    [CrossRef]
  3. A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, "Fast, ultrasensitive virus detection using a young interferometer sensor," Nano Lett. 7, 394-397 (2007).
    [CrossRef] [PubMed]
  4. A. B. Matsko, and V. S. Ilchenko, "Optical resonators with whispering-gallery modes - Part I: Basics," IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).
    [CrossRef]
  5. A. M. Armani, and K. J. Vahala, "Heavy water detection using ultra-high-Q microcavities," Opt. Lett. 31, 1896-1898 (2006).
    [CrossRef] [PubMed]
  6. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
    [CrossRef]
  7. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-Free, Single-Molecule Detection with Optical Microcavities," Science 317, 783-787 (2007).
    [CrossRef] [PubMed]
  8. R. Karlsson, "SPR for molecular interaction analysis: a review of emerging application areas," Journal of Molecular Recognition 17, 151-161 (2004).
    [CrossRef] [PubMed]
  9. M. R. Lee, and P. M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express 15, 4530-4535 (2007).
    [CrossRef] [PubMed]
  10. N. Skivesen, A. Tetu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, "Photonic-crystal waveguide biosensor," Opt. Express 15, 3169-3176 (2007).
    [CrossRef] [PubMed]
  11. J. D. Joannopoulos, R. D. Meade, and J. W. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, New Jersey, 1995).
  12. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
    [CrossRef]
  13. B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
    [CrossRef]
  14. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
    [CrossRef]
  15. D. Psaltis, S. R. Quake, and C. H. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
    [CrossRef] [PubMed]
  16. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
    [CrossRef] [PubMed]
  17. P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, "Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance," Appl. Phys. Lett. 89, 171121-171123 (2006).
    [CrossRef]
  18. S. Elhadj, G. Singh, and R. F. Saraf, "Optical Properties of an Immobilized DNA Monolayer from 255 to 700 nm," Langmuir 20, 5539-5543 (2004).
    [CrossRef]
  19. V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
    [CrossRef] [PubMed]
  20. S. R. Quake, and A. Scherer, "From micro- to nanofabrication with soft materials," Science 290, 1536-1540 (2000).
    [CrossRef] [PubMed]

2008

D. Erickson, S. Mandal, A. Yang, and B. Cordovez, "Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale," Microfluidics and Nanofluidics 4, 33-52 (2008).
[CrossRef] [PubMed]

2007

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, "Fast, ultrasensitive virus detection using a young interferometer sensor," Nano Lett. 7, 394-397 (2007).
[CrossRef] [PubMed]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-Free, Single-Molecule Detection with Optical Microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

N. Skivesen, A. Tetu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, "Photonic-crystal waveguide biosensor," Opt. Express 15, 3169-3176 (2007).
[CrossRef] [PubMed]

M. R. Lee, and P. M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express 15, 4530-4535 (2007).
[CrossRef] [PubMed]

2006

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, "Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance," Appl. Phys. Lett. 89, 171121-171123 (2006).
[CrossRef]

D. Psaltis, S. R. Quake, and C. H. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

A. B. Matsko, and V. S. Ilchenko, "Optical resonators with whispering-gallery modes - Part I: Basics," IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).
[CrossRef]

A. M. Armani, and K. J. Vahala, "Heavy water detection using ultra-high-Q microcavities," Opt. Lett. 31, 1896-1898 (2006).
[CrossRef] [PubMed]

2004

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

R. Karlsson, "SPR for molecular interaction analysis: a review of emerging application areas," Journal of Molecular Recognition 17, 151-161 (2004).
[CrossRef] [PubMed]

S. Elhadj, G. Singh, and R. F. Saraf, "Optical Properties of an Immobilized DNA Monolayer from 255 to 700 nm," Langmuir 20, 5539-5543 (2004).
[CrossRef]

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

2003

2002

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

2000

S. R. Quake, and A. Scherer, "From micro- to nanofabrication with soft materials," Science 290, 1536-1540 (2000).
[CrossRef] [PubMed]

1998

1997

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Appl. Phys. Lett.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, "Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance," Appl. Phys. Lett. 89, 171121-171123 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. B. Matsko, and V. S. Ilchenko, "Optical resonators with whispering-gallery modes - Part I: Basics," IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).
[CrossRef]

J. Lightwave Technol.

Journal of Molecular Recognition

R. Karlsson, "SPR for molecular interaction analysis: a review of emerging application areas," Journal of Molecular Recognition 17, 151-161 (2004).
[CrossRef] [PubMed]

Langmuir

S. Elhadj, G. Singh, and R. F. Saraf, "Optical Properties of an Immobilized DNA Monolayer from 255 to 700 nm," Langmuir 20, 5539-5543 (2004).
[CrossRef]

Microfluidics and Nanofluidics

D. Erickson, S. Mandal, A. Yang, and B. Cordovez, "Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale," Microfluidics and Nanofluidics 4, 33-52 (2008).
[CrossRef] [PubMed]

Nano Lett.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, "Fast, ultrasensitive virus detection using a young interferometer sensor," Nano Lett. 7, 394-397 (2007).
[CrossRef] [PubMed]

Nat. Photonics

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Nature

D. Psaltis, S. R. Quake, and C. H. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Science

S. R. Quake, and A. Scherer, "From micro- to nanofabrication with soft materials," Science 290, 1536-1540 (2000).
[CrossRef] [PubMed]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-Free, Single-Molecule Detection with Optical Microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Other

J. D. Joannopoulos, R. D. Meade, and J. W. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, New Jersey, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) 3D illustration of a sensing element in our sensor design. It consists of a 1D photonic crystal micro-cavity which is evanescently coupled to a Si waveguide. (b) The electric field profile for the fundamental TE mode propagating through an air-clad Si waveguide on SiO2.

Fig. 2.
Fig. 2.

(a) Steady state electric field distribution for the resonant wavelength (b) FDTD simulation showing the output spectrum for a device consisting of a waveguide with four evanescently coupled side cavities adjacent to it. Here each resonator consists of a cavity with four holes on either side. (c) FDTD simulation showing the mass sensitivity of the device plotted as a function of the number of functionalized holes. The blue circles indicate the sensitivity values calculated from the simulations. The red curve shows a least-squares fit using an analytical model for the device sensitivity which is described below.

Fig. 3.
Fig. 3.

Plot illustrating the dependence of the shift in resonant wavelength of a resonator on the number of functionalized holes. The blue holes indicate the data obtained from 3D FDTD simulations. The red curve is a best-fit curve of the form a(1-e-bN) where a and b are arbitrary constants. The values of a and b used here are 6.159 nm and 0.4273 respectively.

Fig. 4.
Fig. 4.

(a) 3D schematic showing a PDMS channel running across the side resonator. This channel allows the fluidic targeting of individual sensing sites (b) SEM of a NOSA device. It illustrates how this architecture is capable of two dimensional multiplexing, thus affording a large degree of parallelism. (c) Actual NOSA chip with an aligned PDMS fluidic layer on top.

Fig. 5.
Fig. 5.

Output spectrum of a NOSA device consisting of five side-resonators as shown in the inset. Each dip in the spectrum is unique to one of the five resonators.

Fig. 6.
Fig. 6.

(a) Output spectrum for a NOSA where one of the 5 resonators is fluidically targeted, first with water and then with a CaCl2 solution. The resonance of the targeted resonator shifts towards the red end of the spectrum due to the higher refractive index of the CaCl2 solution. (b) Experimental data (with error bars indicating inter-device variability) showing the redshifts for various refractive index solutions. The blue line is the theoretically predicted redshift from FDTD simulations. The experimental data is in excellent agreement with the theory.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ λ Δ m = Δ n Δ m A × [ Δ λ Δ n × 1 A ]
Δ λ Δ m = α ( 1 e β N ) N

Metrics