Abstract

The wavelength dependent measurement of the relaxation oscillation frequency in a laser oscillator allows the study of the three- and four-level nature of the active material. Accordingly we present a tunable thulium doped fiber laser that covers the transition from three- to four-level operation at 2025 nm, characterized by the vanishing occupation of the terminal laser level. The laser is tunable from 1864nm to 2075nm with a linewidth below 0.3 nm. A maximum output power of 3.8W at 1930nm was achieved with a slope efficiency of 33.6% and an absorbed pump power of 17.5W. Absorption and emission cross sections were derived over the tuning range by an intracavity measurement method.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. O. G. Okhotnikov, V. V. Kuzmin and J. R. Salcedo, "General intracavity method for laser transition characterization by relaxation oscillation spectral analysis," IEEE Photon. Technol. Lett. 6, 362-364 (1994).
    [CrossRef]
  2. O. G. Okhotnikov and J. R. Salcedo, "Laser transitions characterization by spectral and thermal dependences of the transient oscillation," Opt. Lett. 19, 1445-1447 (1994).
    [CrossRef] [PubMed]
  3. L. Orsila and O. G. Okhotnikov, "Three- and four-level transition dynamics in Yb-fiber laser," Opt. Express 13, 3218-3223 (2005).
    [CrossRef] [PubMed]
  4. W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson and D. C. Hanna, "High-power cladding-pumped Tmdoped silica fiber laser with wavelength tuning from 1860 to 2090 nm," Opt. Lett. 27, 1989-1991 (2002).
    [CrossRef]
  5. G. Imeshev and M. E. Fermann, "230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber," Opt. Express 13, 7424-7431 (2005).
    [CrossRef] [PubMed]
  6. L. E. Nelson, E. P. Ippen and H. A. Haus, "High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm," Appl. Phys. Lett. 67, 19-21 (1995).
    [CrossRef]
  7. S. Agger, J. Hedegaard Povlsen and P. Varming, "Single-frequency thulium-doped distributed-feedback fiber laser," Opt. Lett. 29, 1503-1505 (2004).
    [CrossRef] [PubMed]
  8. S. Agger and J. Hedegaard Povlsen, "Emission and absorption cross section of thulium doped silica fibers," Opt. Express 14, 50-57 (2006).
    [CrossRef] [PubMed]
  9. S. D. Jackson and T. A. King, "Theoretical Modeling of Tm-Doped Silica Fiber Lasers," J. Lightwave Technol. 17, 948-956 (1999).
    [CrossRef]
  10. X. Zou and H. Toratani, "Spectroscopic properties and energy transfer in Tm3+ singly- and Tm3+/Ho3+ doublydoped glasses," J. Lightwave Techn. 195, 113-124 (1996).
  11. B. M. Walsh and N. P. Barnes, "Comparison of Tm:ZBLAN and Tm:silica fiber lasers; Spectroscopy and tunable pulsed laser operation around 1.9 μm," Appl. Phys. B 78, 325-333 (2004).
    [CrossRef]
  12. H. W. Gandy and R. J. Ginther and J. F. Weller, "Stimulated emission of Tm3+ radiation in silicate glass," J. Appl. Phys. 38, 3030-3031 (1967).
    [CrossRef]

2006 (1)

2005 (2)

2004 (2)

S. Agger, J. Hedegaard Povlsen and P. Varming, "Single-frequency thulium-doped distributed-feedback fiber laser," Opt. Lett. 29, 1503-1505 (2004).
[CrossRef] [PubMed]

B. M. Walsh and N. P. Barnes, "Comparison of Tm:ZBLAN and Tm:silica fiber lasers; Spectroscopy and tunable pulsed laser operation around 1.9 μm," Appl. Phys. B 78, 325-333 (2004).
[CrossRef]

2002 (1)

1999 (1)

1996 (1)

X. Zou and H. Toratani, "Spectroscopic properties and energy transfer in Tm3+ singly- and Tm3+/Ho3+ doublydoped glasses," J. Lightwave Techn. 195, 113-124 (1996).

1995 (1)

L. E. Nelson, E. P. Ippen and H. A. Haus, "High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm," Appl. Phys. Lett. 67, 19-21 (1995).
[CrossRef]

1994 (2)

O. G. Okhotnikov, V. V. Kuzmin and J. R. Salcedo, "General intracavity method for laser transition characterization by relaxation oscillation spectral analysis," IEEE Photon. Technol. Lett. 6, 362-364 (1994).
[CrossRef]

O. G. Okhotnikov and J. R. Salcedo, "Laser transitions characterization by spectral and thermal dependences of the transient oscillation," Opt. Lett. 19, 1445-1447 (1994).
[CrossRef] [PubMed]

1967 (1)

H. W. Gandy and R. J. Ginther and J. F. Weller, "Stimulated emission of Tm3+ radiation in silicate glass," J. Appl. Phys. 38, 3030-3031 (1967).
[CrossRef]

Appl. Phys. B (1)

B. M. Walsh and N. P. Barnes, "Comparison of Tm:ZBLAN and Tm:silica fiber lasers; Spectroscopy and tunable pulsed laser operation around 1.9 μm," Appl. Phys. B 78, 325-333 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

L. E. Nelson, E. P. Ippen and H. A. Haus, "High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm," Appl. Phys. Lett. 67, 19-21 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

O. G. Okhotnikov, V. V. Kuzmin and J. R. Salcedo, "General intracavity method for laser transition characterization by relaxation oscillation spectral analysis," IEEE Photon. Technol. Lett. 6, 362-364 (1994).
[CrossRef]

J. Appl. Phys. (1)

H. W. Gandy and R. J. Ginther and J. F. Weller, "Stimulated emission of Tm3+ radiation in silicate glass," J. Appl. Phys. 38, 3030-3031 (1967).
[CrossRef]

J. Lightwave Techn. (1)

X. Zou and H. Toratani, "Spectroscopic properties and energy transfer in Tm3+ singly- and Tm3+/Ho3+ doublydoped glasses," J. Lightwave Techn. 195, 113-124 (1996).

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Setup of the unidirectional ring cavity. HWP/QWP: zero order half wave plate/quarter waveplate, TDF: thulium doped fiber. The laser operates contradirectional to the pump light delivery.

Fig. 2.
Fig. 2.

Output power of the Tm-doped fiber laser. (a) Output power versus absorbed pump power for different wavelength. (b) Output power versus wavelength for different absorbed pump powers.

Fig. 3.
Fig. 3.

Laser spectrum: The resolution is limited by the grating monochromator. The lineshape is caused by the asymmetric transmission function of the monochromator.

Fig. 4.
Fig. 4.

(a)ω 2 relax versus (r-1) for various laser wavelength, (b) Slopes from graph (a) shown versus wavelength.

Fig. 5.
Fig. 5.

(a) Fluorescence decay measurement of the Tm-doped fiber, exited by a chopped pump source at 793 nm. (b) Absorption and emission cross section of the Tm-doped fiber over the tuning range of the laser.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ω relax 2 = c η ( σ Em + σ Abs ) ( R R Th ) or , equivalently
ω relax 2 = 1 τ c τ f ( 1 + c τ c σ Abs η N ) ( r 1 )

Metrics