Abstract

A wavelength splitter and a polarization splitter with high compactness and extremely simple structures are designed for optical communication wavelengths. Operation principle of the devices is based on directional coupling in two parallel periodic dielectric waveguides. The device performances have been evaluated by the finite-difference time-domain simulations. The wavelength splitter with a coupling region length of 5 µm can route 1.31 and 1.55 µm wavelengths to corresponding outputs with a transmittance of more than 93%, while the polarization splitter with a coupling region length of 4.6 µm can divide lightwaves in TM and TE polarizations with a degree of polarization higher than 90% at 1.55 µm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. Koshiba, "Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers," J. Lightwave Technol. 19, 1970-1975 (2001).
    [CrossRef]
  2. S. Boscolo, M. Midrio, and C. G. Someda, "Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides," IEEE J. Quantum Elect. 38, 47-53 (2002).
    [CrossRef]
  3. J. Smajic, C. Hafner, and D. Erni, "On the design of photonic crystal multiplexers," Opt. Express 11, 566-571 (2003).
    [CrossRef] [PubMed]
  4. F. S. S. Chien, Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, "Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides," Opt. Express 12, 1119-1125 (2003).
    [CrossRef]
  5. M. Y. Tekeste and J. M. Yarrison-Rice, "High efficiency photonic crystal based wavelength demultiplexer," Opt. Express 14, 7931-7942 (2006).
    [CrossRef] [PubMed]
  6. S. Kim, G. P. Nordin, J. Cai, and J. Jiang, "Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure," Opt. Lett. 28, 2384-2386 (2003).
    [CrossRef] [PubMed]
  7. L. J. Wu, M. Mazilu, J. F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, "Planar photonic crystal polarization splitter," Opt. Lett. 29, 1620-1622 (2004).
    [CrossRef] [PubMed]
  8. H. Altug and J. Vučković, "Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays," Opt. Lett. 30, 982-984 (2005).
    [CrossRef] [PubMed]
  9. Y. R. Zhen and L. M. Li, "A novel application of two-dimensional photonic crystals: polarization beam splitter," J. Phys. D: Appl. Phys. 38, 3391-3394 (2005).
    [CrossRef]
  10. P. Pottier, S. Mastroiacovo, and R. M. De La Rue, "Power and polarization beam-splitters, mirrors, and integrated interferometers based on air-hole photonic crystals and lateral large index-contrast waveguides," Opt. Express 14, 5617-5633 (2006).
    [CrossRef] [PubMed]
  11. X. Ao, L. Liu, L. Wosinski, and S. He, "Polarization beam splitter based on a two-dimensional photonic crystal of pillar type," Appl. Phys. Lett. 891711151-3 (2006).
    [CrossRef]
  12. P. G. Luan and K. D. Chang, "Transmission characteristics of finite periodic dielectric waveguides," Opt. Express 14, 3263-3272 (2006).
    [CrossRef] [PubMed]
  13. S. Fan, N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, and J.D. Joannopoulos, "Guided and defect modes in periodic dielectric waveguides," J. Opt. Soc. Am. B 12, 1267-1272 (1995).
    [CrossRef]
  14. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001).
    [CrossRef] [PubMed]
  15. P. G. Luan and K. D Chang, "Periodic dielectric waveguide beam splitter based on co-directional coupling," Opt. Express 15, 4536-4545 (2007).
    [CrossRef] [PubMed]

2007 (1)

2006 (4)

2005 (2)

Y. R. Zhen and L. M. Li, "A novel application of two-dimensional photonic crystals: polarization beam splitter," J. Phys. D: Appl. Phys. 38, 3391-3394 (2005).
[CrossRef]

H. Altug and J. Vučković, "Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays," Opt. Lett. 30, 982-984 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (3)

2002 (1)

S. Boscolo, M. Midrio, and C. G. Someda, "Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides," IEEE J. Quantum Elect. 38, 47-53 (2002).
[CrossRef]

2001 (2)

1995 (1)

Appl. Phys. Lett. (1)

X. Ao, L. Liu, L. Wosinski, and S. He, "Polarization beam splitter based on a two-dimensional photonic crystal of pillar type," Appl. Phys. Lett. 891711151-3 (2006).
[CrossRef]

IEEE J. Quantum Elect. (1)

S. Boscolo, M. Midrio, and C. G. Someda, "Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides," IEEE J. Quantum Elect. 38, 47-53 (2002).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

Y. R. Zhen and L. M. Li, "A novel application of two-dimensional photonic crystals: polarization beam splitter," J. Phys. D: Appl. Phys. 38, 3391-3394 (2005).
[CrossRef]

Opt. Express (7)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

(a) A single-row PDWG model. The dashed frame shows the supercell for the PWE calculation. (b) Band structure of the model. The shaded region represents the extended modes (light line region) and the inset shows the single mode pattern.

Fig. 2.
Fig. 2.

(a) Directional coupling model. The dashed frame shows the supercell for the PWE calculation. (b) Band structure of the model. The insets show the mode patterns of the first and second band mode.

Fig. 3.
Fig. 3.

Steady-state field distributions in the directional coupling region with a length of L=32a for lightwaves at (a) 1.31 µm and (b) 1.55 µm.

Fig. 4.
Fig. 4.

Scheme of the wavelength splitter in PDWGs.

Fig. 5.
Fig. 5.

Steady-state field distributions in the wavelength splitter for different wavelengths.

Fig. 6.
Fig. 6.

Normalized intensity spectrum from 1.25 to 1.60 µm for the wavelength splitter. The solid curves are for the coupling region with L=32a, while the dashed curves for L=30a.

Fig. 7.
Fig. 7.

(a) A single-row PDWG model. The dashed frame shows the supercell for the PWE calculation. (b) Band structure of the model. The insets show the single mode patterns.

Fig. 8.
Fig. 8.

(a) Directional coupling model. The dashed frame shows the supercell for the PWE calculation. (b) Band structure of the model. The insets show the first and second band mode patterns in TM and TE polarizations.

Fig. 9.
Fig. 9.

Scheme of the polarization splitter in PDWGs.

Fig. 10.
Fig. 10.

Steady-state field distributions in the polarization splitter for 1.55 µm in different polarizations.

Fig. 11.
Fig. 11.

Normalized intensity of the polarization splitter in a wavelength region of 1.52 to 1.58 µm.

Fig. 12.
Fig. 12.

Degree of polarization of the polarization splitter in a wavelength region of 1.52 to 1.58 µm at the two outputs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L c = π k 1 k 2
P = I TE I TM I TE + I TM

Metrics